Skip to main content
Log in

Cadmium background concentrations to establish reference quality values for soils of São Paulo State, Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n = 191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg−1, and the background concentration was 0.5 mg kg−1. After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg−1 of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg−1) was higher than in Ultisols (0.3 mg kg−1). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R 2 = 0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2008). Toxicological profile for cadmium, draft for public comment. http://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=48&tid=15. Accessed 25 April 2013

  • Alleoni, L. R. F., Iglesias, M. S. C., Mello, S. C., Camargo, O. A., Casagrande, J. C., & Lavorenti, N. A. (2005). Atributos dos solos relacionados à adsorção de cádmio e cobre em solos tropicais. Acta Scientiarum Agronomy, 27(4), 729–737.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). Cadmium. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 122–151). Glasgow: Blackie.

    Chapter  Google Scholar 

  • An, Y. J. (2004). Soil ecotoxicity assessment using cadmium sensitive plants. Environmental Pollution, 127, 21–26.

    Article  CAS  Google Scholar 

  • Anju, M., & Banerjee, D. K. (2011). Associations of cadmium, zinc and lead in soils from a lead and zinc mining area as studied by single and sequential extractions. Environmental Monitoring and Assessment, 176, 67–85.

    Article  CAS  Google Scholar 

  • Aravind, P., & Prasad, M. N. V. (2005). Cadmium-zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptative ecophysiology, biochemistry and molecular toxicology. Brazilian Journal of Plant Physiology, 17(1), 3–20.

    Article  CAS  Google Scholar 

  • Baize, D., & Sterckeman, T. (2001). Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of contamination of soils by trace elements. Science of The Total Environment, 264, 127–139.

    Article  CAS  Google Scholar 

  • Biondi, C.M. (2010). Teores naturais de metais pesados nos solos de referência do Estado de Pernambuco. Recife: Universidade Federal de Pernambuco (M.Sc. Thesis)

  • Bizarro, V. G., Meurer, E. J., & Tatsch, F. R. P. (2008). Teor de cádmio em fertilizantes fosfatados comercializados no Brasil. Ciência Rural, 38(1), 247–250.

    Article  CAS  Google Scholar 

  • Bradford, G.R., Chang, A.C., Page, A.L., Bakhtar, D., Frampton, J.A., Wright, H. (1996). Background concentrations of trace and major elements in California soils. Kearney Foundation of Soil Science Special Report. http://envisci.ucr.edu/downloads/chang/kearney_special_report_1996.pdf. Accessed 22 March 2011

  • Breckenridge, R.P., & Crockett, A.B.. (1995). Determination of background concentration of inorganics in soil and sediments at hazardous waste sites. EPA/540/S-96/500. Washington, DC

  • Caires, S.M. (2009) Determinação dos teores naturais de metais pesados em solos do estado de Minas Gerais como subsídio ao estabelecimento de valores referência de qualidade.Viçosa: Universidade Federal de Viçosa (Ph.D. thesis)

  • Camargo, O.A., Moniz, A.C., Jorge, J.A., Valadares, J.M.A.S. (2009). Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas (IAC, Boletim Técnico, 106, Edição revisada e atualizada), Campinas, SP

  • Campos, M. L., Pierangeli, M. A. P., Guilherme, L. R. G., Marquesa, J. J., & Curia, N. (2003). Baseline concentration of heavy metals in Brazilian Latosols. Communications in Soil Science and Plant Analysis, 34(3–4), 547–557.

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., & Harris, W. G. (1999). Baseline concentrations of 15 trace elements in Florida soils. Journal Environment, 28, 1173–1181.

    CAS  Google Scholar 

  • Chen, M., Ma, L. Q., & Harris, W. G. (2002). Arsenic concentrations in Florida surface soils: influence of soil type and properties. Soil Science Society of America Journal, 66, 632–640.

    Article  CAS  Google Scholar 

  • Cicchella, D., De Vivo, B., & Lima, A. (2005). Background and baseline concentration values of elements harmful to human health in the volcanic soils of the metropolitan and provincial areas of Napoli (Italy). Geochemistry: Exploration, Environment, Analysis, 5, 29–40.

    CAS  Google Scholar 

  • Conselho Estadual de Política Ambiental, COPAM. (2011). Deliberação Normativa no. 166, de 29 de Junho de 2011. Altera o Anexo I da Deliberação Normativa Conjunta COPAM CERH nº 2 de 6 de setembro de 2010, estabelecendo os Valores de Referência de Qualidade dos Solos. http://www.inteligenciaambiental.com.br/sila/pdf/edelcopammg166-11.pdf. Accessed 20 May 2013

  • Conselho Nacional do Meio Ambiente, CONAMA. (2009). Resolução no. 420, de 28 de dezembro de 2009. “Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas.” Diário Oficial [da República Federativa do Brasil], Brasília, DF, no 249, de 30/12/2009. http://www.mma.gov.br/port/conama/legiano1.cfm?codlegitipo=3&ano=2009. Accessed 15 April 2011

  • Companhia de Tecnologia de Saneamento Ambiental, CETESB (2005). Relatório Estabelecimento de Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo. http://www.cetesb.sp.gov.br/solo/legislacao/6-valores-orientadores. Accessed 17 April 2012

  • Dirven-Van Breemen, E.M., Lijzen, J.P.A., Otte, P.F., Van Vlaardigen, P.L.A., Spijtker, J., Verbruggen, F.A., et al. (2007). Landelijke referentiewaarden ter onderbouwing van maximale waarden in het bodembeleid. Bilthoven: RIVM. http://www.rivm.nl/bibliotheek/rapporten/711701053.html. Accessed 27 May 2011

  • Dissanayake, C. B., & Chandrajith, R. (2009). Phosphate mineral fertilizers, trace metals and human health. Journal of the National Science Foundation of Sri Lanka, 37(3), 153–165.

    CAS  Google Scholar 

  • Fadigas, F. S., Sobrinho, N. M. B. A., Mazur, N., Anjos, L. H. C., & Freixo, A. A. (2002). Concentrações naturais de metais pesados em algumas classes de solos brasileiros. Bragantia, 61(2), 151–159.

    Article  CAS  Google Scholar 

  • Fadigas, F. S., Sobrinho, N. M. B. A., Anjos, L. H. C., & Mazur, N. (2010). Background levels of some trace elements in weathered soils from the Brazilian Northern region. Scientia Agricola, 67(1), 53–59.

    Article  CAS  Google Scholar 

  • Frattini, C. T. A., & Kalckmann, R. E. (1967). Correlação entre alguns métodos de determinação do carbono. Pesquisa Agropecuária Brasileira, 2, 259–261.

    Google Scholar 

  • Guo, G., Wu, F., Xie, F., & Zhang, R. (2012). Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. Journal of Environmental Sciences, 23(3), 410–418.

    Article  Google Scholar 

  • Horckmans, L., Swennen, R., Deckers, J., & Maquil, R. (2005). Local background concentrations of trace elements in soils: a case study in the Grand Duchy of Luxembourg. Catena, 59, 279–304.

    Article  CAS  Google Scholar 

  • Instituto Nacional de Metrologia, Normalização e Qualidade Indústria, INMETRO. (2003). DOQ-CGCRE-008. Orientações sobre validação de métodos de ensaios químicos. http://www.inmetro.gov.br/Sidoq/Arquivos/CGCRE/DOQ/DOQ-CGCRE-8_02.pdf. Accessed 20 May 2012

  • Kabata-Pendias, A., & Pendias, H. P. (2001). Trace elements in soils and plants. Florida: CRC Press.

    Google Scholar 

  • Kookana, R. S., Naidu, R., Barry, D. A., Tran, Y. T., & Bajracharya, K. (1999). Sorption–desorption equilibria and dynamics of cadmium during transport in soil. In H. M. Selim & A. Iskandar (Eds.), Fate and transport of heavy metals in the vadose zone (pp. 59–90). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Lavado, R. S., Zubillaga, M. S., Alvarez, R., & Taboada, M. A. (2004). Baseline levels of potentially toxic elements in pampas soils. Soil & Sediment Contamination, 13, 329–339.

    Google Scholar 

  • Lei, M., Zhang, Y., Khan, S., Quin, P., & Liao, B. (2010). Pollution, fractionation and mobility of Pb, Cd, Cu and Zn in garden and paddy soils from Pb/Zn mining area. Environmental Monitoring and Assessment, 168, 215–222.

    Article  CAS  Google Scholar 

  • Makino, T. (2007). Heavy metal pollution of soil and a new approach to its remediation: research experiences in Japan. In Z. S. Chen (Ed.), Proceedings of the International Workshop of ESAFS8: New solutions to soil pollution and distribution, bioavailability and management of heavy metals (pp. 55–74). Taipei: Food and Fertilizer Technology Center for the Asian and Pacific Region.

    Google Scholar 

  • Mello, J. W. V., & Abrahão, W. A. P. (2013). Valores de Referência de qualidade para elementos traço nos solos de Minas Gerais e Espírito Santo: os bastidores de uma experiência. Boletim Informativo Sociedade Brasileira de Ciência do Solo, 38(1), 12–17.

    Google Scholar 

  • Melo, L. C. A., Alleoni, L. R. F., Swartjes, F. A., & Silva, E. B. (2012). Cadmium uptake by lettuce (Lactuca sativa L.) as basis for derivation of risk limits in soils. Human and Ecological Risk Assessment, 18(4), 888–901.

    Article  CAS  Google Scholar 

  • Mendes, A. M. S., Duda, G. P., Nascimento, C. W. A., & Silva, M. O. (2006). Bioavailability of cadmium and lead in a soil amended with phosphorus fertilizers. Scientia Agricola, 63(4), 328–332.

    Article  CAS  Google Scholar 

  • MINEROPAR. (2005) Minerais do Paraná S.A. Geoquímica do solo – Horizonte B: Relatório final de projeto. Curitiba: Mineropar. http://www.mineropar.pr.gov.br/arquivos/File/publicacoes/relatorios_concluidos/12_2_relatorios_concluidos.pdf. Accessed 14 June 2012

  • Mirlean, N., & Roisenberg, A. (2006). The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil. Environmental Pollution, 143, 335–340.

    Article  CAS  Google Scholar 

  • Page, A. L., Chang, A. C., & El-Amany, M. (1987). Cadmium level in soils and crops in the United States. In T. C. Hutchingson & K. M. Meema (Eds.), Lead, mercury, cadmium and arsenic in the environment, SCOPE 31 (pp. 119–146). Chichester: Wiley.

    Google Scholar 

  • Parth, V., Murthy, N. N., & Saxena, P. R. (2011). Assessment of heavy metal contamination in soil around hazardous waste disposal sites in Hyderabad city (India): natural and anthropogenic implications. Journal of Environmental Research and Management, 2(2), 27–34.

    Google Scholar 

  • Paye, H. S., Mello, J. W. V., Abrahão, W. A. P., Filho, E. I. F., Dias, L. C. P., & Castro, L. M. O. (2010). Valores De Referência De Qualidade Para Metais Pesados Em Solos No Estado Do Espírito Santo. Revista Brasileira de Ciência de Solo, 34, 2041–2051.

    Article  Google Scholar 

  • Pierangeli, M.A.P. (2003). Adsorção de cádmio em latossolos brasileiros. Lavras: Universidade Federal de Lavras (Ph.D. Thesis)

  • Pierangeli, M. A. P., Guilherme, L. R. G., Curi, N., Silva, M. L. N., Lima, J. M., & Costa, E. T. S. (2005). Efeito do pH na adsorção e dessorção de cádmio em Latossolos brasileiros. Revista Brasileira de Ciência do Solo, 29, 523–532.

    Article  CAS  Google Scholar 

  • Pierangeli, M. A. P., Guilherme, L. R. G., Curi, N., Costa, E. T. S., Lima, J. M., & Marques, J. J. G. S. M. (2007). Comportamento sortivo, individual e competitivo de metais pesados em Latossolos com mineralogia contrastante. Revista Brasileira de Ciência do Solo, 31, 819–826.

    Article  CAS  Google Scholar 

  • Santos, S. N., & Alleoni, L. R. F. (2013). Reference values for heavy metals in soils of Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment, 185, 5737–5748.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (1999). Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys (2nd ed.). Washington (DC): U.S. Department of Agriculture, Natural Resources Conservation Service.

    Google Scholar 

  • Swartjes, F. A., Rutgers, M., Lijzen, J. P. A., Janssen, P. J. C. M., Otte, P. F., Wintersen, A., et al. (2012). State of the art of contaminated site management in The Netherlands: policy framework and risk assessment tools. Science of the Total Environment, 427–428, 1–10.

    Article  Google Scholar 

  • Tack, F. M. G., Verloo, M. G., Vanmechelen, L., & Van Ranst, E. (1997). Baseline concentration levels of trace elements as a function of clay and organic carbon contents in soils in Flanders (Belgium). Science of the Total Environment, 201, 113–123.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency, USEPA. (2004). Method 3051: microwave assisted acid digestion of sediments, sludges, soils, and oils. http://www.epa.gov/epaoswer/hazwaste/test/3_series.htm. Accessed 10 February 2011

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic soil titration method. Soil Science, 37, a-38.

    Article  Google Scholar 

  • Zar, H. J. (1999). Biostatistical analysis. New Jersey: Prentice Hall.

    Google Scholar 

Download references

Acknowledgments

The authors thank the São Paulo Research Foundation (FAPESP) for granting a master’s degree scholarship to the first author and also for the financial support of the project (2011/14744-6 and 2012/05490-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Henrique de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, V.H., de Abreu, C.A., Coelho, R.M. et al. Cadmium background concentrations to establish reference quality values for soils of São Paulo State, Brazil. Environ Monit Assess 186, 1399–1408 (2014). https://doi.org/10.1007/s10661-013-3462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3462-2

Keywords

Navigation