Skip to main content
Log in

Levels and Variability of Metals in Soils of the Province of Golestan (Iran)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Studying the concentration distribution of metals is necessary for soil pollution monitoring and maintaining environmental quality. To date, very little large-scale research has been performed to investigate metal contamination in developing countries. In this study, the content and spatial distributions of five metals (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were quantified based on 346 topsoil samples from 12 districts in the province of Golestan (northeast [NE] Iran). The concentration levels (mg/kg) of Cd, Cu, Pb, Ni and Zn varied from 0.02 to 0.36, 9.3 to 93.7, 6.8 to 44, 9.5 to 85.35, and 25 to 417.4, respectively. The average concentrations (mg/kg) obtained were as follows: Cd 0.12 ± 0.07, Cu 23.9 ± 9.07, Ni 34.88 ± 11.59, Pb 15.42 ± 5.81 and Zn 82.08 ± 30.87. Significant differences in the distribution of trace elements among districts were detected. The AzadShahr and BandarGaz districts displayed the highest metal concentrations. Greater metal values were obtained in the central, south, west, and NE areas, although Zn concentration was also high to the north of the province. Values of contamination factor and contamination degree indicated that the metal pollution level was on the order of Zn > Cd > Pb > Cu > Ni and that all of the metals belonged to a low or moderate pollution category. Ni and Cu levels derived from natural sources, whereas Cd, Pb, and Zn derived from anthropogenic activities with greater mean concentrations than reference concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals. Springer, New York

    Book  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic and Professional, Wageningen

    Book  Google Scholar 

  • Alloway BJ, Ayres DC (1997) Chemical principles of environmental pollution, 2nd edn. Blackie Academic and Professional, Chapman and Hall

    Google Scholar 

  • Amini M, Afyuni M, Fathianpour N, Khademi H, Flühler H (2005) Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma 124:223–233

    Article  CAS  Google Scholar 

  • Bai J, Xiao R, Gong A, Gao H, Huang L (2010) Assessment of heavy metal contamination of surface soils from typical paddy terrace wetlands on the Yunnan Plateau of China. Phys Chem Earth 36:447–450

    Article  Google Scholar 

  • Berrow ML, Reaves GA (1986) Total chromium and nickel contents of Scottish soils. Geoderma 37:15–27

  • Bloemen ML, Markert B, Lieth H (1995) The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use. Sci Total Environ 166:137–148

    Article  CAS  Google Scholar 

  • Boluda R (1988) Relaciones estadísticas de los valores de metales pesados (Cd Co, Cu, Cr, Ni, Pb y Zn) con el pH, contenido en materia orgánica, carbonatos totales y arcilla de los suelos de la comarca La Plana de Requena-Utiel (Valencia). An Edafol Agrobiol 47:1503–1524

    Google Scholar 

  • Brūmelis G, Lapiņa L, Nikodemus O, Tabors G (2002) Use of the O horizon of forest soils in monitoring metal deposition in Latvia. Water Air Soil Pollut 135:291–309

    Article  Google Scholar 

  • Cai L, Huang L, Zhou Y, Xu Z, Peng X, Yao L et al (2010) Heavy metal concentrations of agricultural soils and vegetables from Dongguan, Guangdong. J Geogr Sci 20:121–134

    Article  Google Scholar 

  • Carbonell G, Imperial RM, Torrijos M, Delgado M, Rodriguez JA (2011) Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.). Chemosphere 85:1614–1623

    Article  CAS  Google Scholar 

  • Chu HJ, Lin YP, Jang CS, Chang TK (2010) Delineating the hazard zone of multiple soil pollutants by multivariate indicator kriging and conditioned Latin hypercube sampling. Geoderma 158:242–251

    Article  CAS  Google Scholar 

  • Dankoub Z, Ayoubi S, Khademi H, Lu SG (2012) Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, central Iran. Pedosphere 22:33–47

    Article  CAS  Google Scholar 

  • Darvish Bastami K, Bagheri H, Haghparast S, Soltani F, Hamzehpoor A, Darvish et al (2012) Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Mar Pollut Bull 64:2877–2884

    Article  Google Scholar 

  • Davies B (1997) Heavy metal contaminated soils in an old industrial area of Wales, Great Britain: source identification through statistical data interpretation. Water Air Soil Pollut 94:85–98

    CAS  Google Scholar 

  • Davis HT, Marjorie Aelion C, McDermott S, Lawson AB (2009) Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environ Pollut 157:2378–2385

    Article  CAS  Google Scholar 

  • Dayani M, Mohammadi J (2010) Geostatistical assessment of Pb, Zn and Cd contamination in near-surface soils of the urban-mining transitional region of Isfahan, Iran. Pedosphere 20(5):568–577

    Article  CAS  Google Scholar 

  • de Meeûs C, Eduljee GH, Hutton M (2002) Assessment and management of risks arising from exposure to cadmium in fertilisers. I. Sci Total Environ 291:167–187

    Article  Google Scholar 

  • Diaz-Alarcón JP, Navarro-Alarcon M, De la Serrana HLG, Asensio-Drima C, Lopez-Martinez MC (1996) Determination and chemical speciation of selenium in farmlands from south-eastern Spain: relation to levels found in sugar cane. J Agric Food Chem 44:2423–2427

    Article  Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324

    Article  CAS  Google Scholar 

  • Geranian H, Mokhtari AR, Cohen DR (2013) A comparison of fractal methods and probability plots in identifying and mapping soil metal contamination near an active mining area, Iran. Sci Total Environ 463–464:845–854

    Article  Google Scholar 

  • Ghaderian SM, Ghotbi Ravandi AA (2012) Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. J Geochem Explor 123:25–32

    Article  CAS  Google Scholar 

  • Gimeno-García E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25

    Article  Google Scholar 

  • Gowd SS, Ramakrishna Reddy M, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard Mater 174:113–121

    Article  CAS  Google Scholar 

  • Hanesch M, Scholger R, Dekkers MJ (2001) The application of fuzzy c-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites. Phys Chem Earth 26:885–891

    Article  Google Scholar 

  • Juang KW, Chen YS, Lee DY (2004) Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environ Pollut 127:229–238

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC, Boca Raton

    Google Scholar 

  • Karimi R, Ayoubi S, Jalalian A, Sheikh-Hosseini AR, Afyuni M (2011) Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran. J Appl Geophys 74:1–7

    Article  Google Scholar 

  • Keshavarzi B, Moore F, Najmeddin A, Rahmani F (2012) The role of selenium and selected trace elements in the etiology of esophageal cancer in high risk Golestan province of Iran. Sci Total Environ 433:89–97

    Article  CAS  Google Scholar 

  • Maas S, Scheifler R, Benslama M, Crini N, Lucot E, Brahmia Z et al (2010) Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environ Pollut 158:2294–2301

    Article  CAS  Google Scholar 

  • McDermott S, Wu J, Cai B, Lawson A, Marjorie Aelion C (2011) Probability of intellectual disability is associated with soil concentrations of arsenic and lead. Chemosphere 84:31–38

    Article  CAS  Google Scholar 

  • McGrath SP, Loveland PJ (1992) The geochemical atlas of England and Wales. Chapman and Hall, London

    Google Scholar 

  • Mico C, Recatala L, Peris M, Sanchez J (2006) Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65:863–872

    Article  CAS  Google Scholar 

  • Ministry of Housing, Spatial Planning and Environment (VROM) (1994) Intervention values and target values: Soil quality standards. VROM, The Hague, Netherlands, p. 19 (DBO/07494013)

  • Mirzaei R (2012) Determination of suitable areas for the conservation of birds based on spatial distribution of environmental threats and species diversity in Golestan province [in Persian with English abstract]. Dissertation, Tarbiat Modares University, Iran

  • Nael M, Khademi H, Jalalian A, Schulin R, Kalbasi M, Sotohian F (2009) Effect of geo-pedological conditions on the distribution and chemical speciation of selected trace elements in forest soils of western Alborz, Iran. Geoderma 152:157–170

    Article  CAS  Google Scholar 

  • Naimi S, Ayoubi S (2013) Vertical and horizontal distribution of magnetic susceptibility and metal contents in an industrial district of central Iran. J Appl Geophys 96:55–66

    Article  Google Scholar 

  • Nanos N, Rodríguez Martín JA (2012) Multiscale analysis of heavy metal contents in soils: spatial variability in the Duero river basin (Spain). Geoderma 189:554–562

    Article  Google Scholar 

  • Nourzadeh M, Hashemy SM, Rodriguez Martin JA, Bahrami HA, Moshashaei S (2012) Using fuzzy clustering algorithms to describe the distribution of trace elements in arable calcareous soils in northwest Iran. Arch Agron Soil Sci 59:435–448

    Article  Google Scholar 

  • Ódor L, Horváth I, Fugedi U (1997) Low-density geochemical mapping in Hungary. J Geochem Explor 60:55–66

    Article  Google Scholar 

  • Parizanganeh A, Hajisoltani P, Zamani A (2010) Assessment of heavy metal pollution in surficial soils surrounding zinc industrial complex in Zanjan-Iran. Proced Environ Sci 2:162–166

    Article  Google Scholar 

  • Pekey H, Karakas D, Ayberk S, Tolun L, Bakoglu M (2004) Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Mar Pollut Bull 48:946–953

    Article  CAS  Google Scholar 

  • Qishlaqi A, Moore F, Forghani G (2009) Characterization of metal pollution in soils under two land-use patterns in the Angouran region, NW Iran: a study based on multivariate data analysis. J Hazard Mater 172:374–384

    Article  CAS  Google Scholar 

  • Reglero MM, Monsalve-González L, Taggart MA, Mateo R (2008) Transfer of metals to plants and red deer in an old lead mining area in Spain. Sci Total Environ 406:29–287

    Article  Google Scholar 

  • Roca-Perez L, Gil C, Cervera ML, Gonzálvez A, Ramos-Miras J, Pons V et al (2010) Selenium and heavy metals content in some Mediterranean soils. J Geochem Explor 107:110–116

    Article  CAS  Google Scholar 

  • Rodríguez Martín J, Vázquez de la Cueva A, Grau Corbí J, López Arias M (2007) Factors controlling the spatial variability of copper in topsoils of the northeastern region of the Iberian Peninsula, Spain. Water Air Soil Pollut 186:311–321

    Article  Google Scholar 

  • Rodríguez Martín J, Vazquez de la Cueva A, Grau Corbí J, Martínez Alonso C, López Arias M (2009) Factors controlling the spatial variability of mercury distribution in Spanish topsoil. Soil Sediment Contam 18:30–42

    Article  Google Scholar 

  • Rodríguez Martín JA, Carbonell G, Nanos N, Gutiérrez C (2013a) Source identification of soil mercury in the Spanish Islands. Arch Environ Contam Toxicol 64:171–179

    Article  Google Scholar 

  • Rodríguez Martín JA, Ramos-Miras JJ, Boluda R, Gil C (2013b) Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 200:180–188

    Article  Google Scholar 

  • Rodríguez Martín JA, Gutiérrez C, Escuer M, García-González MT, Campos-Herrera R, Águila N (2014) Effect of mine tailing on the spatial variability of soil nematodes from lead pollution in La Union (Spain). Sci Total Environ 473–474:518–529

    Article  Google Scholar 

  • Rodríguez JA, Grau JM, López-Arias M (2006) Heavy metal contents in agricultural topsoils in the Ebro basin (Spain). Application of multivariate geostatistical methods to study spatial variations. Environ Pollut 144:1001–1012

    Article  Google Scholar 

  • Rodríguez JA, Nanos N, Grau JM, Gil L, López-Arias M (2008) Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 70:1085–1096

    Article  Google Scholar 

  • Romic M, Romic D (2003) Heavy metals distribution in agricultural topsoils in urban area. Environ Geol 43:795–805

    CAS  Google Scholar 

  • Saby NPA, Thioulouse J, Jolivet CC, Ratie C, Boulonne L, Bispoc A et al (2009) Multivariate analysis of the spatial patterns of 8 trace elements using the French soil monitoring network data. Sci Total Environ 407:5644–5652

    Article  CAS  Google Scholar 

  • Soffianian A, Madani ES, Arabi M (2014) Risk assessment of heavy metal soil pollution through principal components analysis and false color composition in Hamadan province. Iran. Environ Syst Res 3(1):1–14

    Article  Google Scholar 

  • Solgi E, Esmaili-Sari A, Riyahi-Bakhtiari A, Hadipour M (2012) Soil contamination of metals in the three industrial estates, Arak. Iran. Bull Environ Contam Toxicol 88:634–638

    Article  CAS  Google Scholar 

  • Sollitto D, Romic M, Castrignanò A, Romic D, Bakic H (2010) Assessing heavy metal contamination in soils of the Zagreb region (northwest Croatia) using multivariate geostatistics. Catena 80:182–194

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1997) Recent developments for in situ treatment of metal contaminated soils. EPA/542/R-97/004. Office of Solid Waste and Emergency Response, USEPA, Washington, DC

  • Wang XS, Qin Y (2006) Spatial distribution of metals in urban topsoils of Xuzhou (China): controlling factors and environmental implications. Environ Geol 49:905–914

    Article  CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    Article  CAS  Google Scholar 

  • Yeganeh M, Afyuni M, Khoshgoftarmanesh AH, Khodakarami L, Amini M, Soffyanian A et al (2013) Mapping of human health risks arising from soil nickel and mercury contamination. J Hazard Mater 244:225–239

    Article  Google Scholar 

  • Zeng G, Liang J, Guo SH, Shi L, Xiang L, Li X et al (2009) Spatial analysis of human health risk associated with ingesting manganese in Huangxing town, Middle China. Chemosphere 77:368–375

    Article  CAS  Google Scholar 

  • Zhang C, Selinus O, Schedin J (1998) Statistical analyses for heavy metal contents in till and root samples in an area of southeastern Sweden. Sci Total Environ 212:217–232

    Article  CAS  Google Scholar 

  • Zhao H, Xia B, Fan C, Zhao P, Shen S (2012) Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci Total Environ 417:45–54

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the EPA of the Islamic Republic of Iran and in part by the University of Kashan Research Council (Grant No. 255802/1), to whom we are indebted. We appreciate all of the colleagues who collected and analysed soil samples and data, especially H. Yusefzadeh for statistical comments and F. Ghorbani for help in the chemical analyses. We are also grateful to H. Ghorbani and N. Hafezi Moghaddas for their help in the fieldwork and for data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, R., Esmaili-Sari, A., Hemami, M.R. et al. Levels and Variability of Metals in Soils of the Province of Golestan (Iran). Arch Environ Contam Toxicol 67, 617–629 (2014). https://doi.org/10.1007/s00244-014-0043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0043-5

Keywords

Navigation