Skip to main content
Log in

Background Variation and Threshold Values for Cadmium Concentration in Terra Rossa Soil from Dalmatia, Croatia

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The objectives of this study were to (i) establish the background variation and determine a threshold values for aqua regia soluble cadmium (Cd) in Terra Rossa soil at the local scale (Dalmatia, Croatia), (ii) check for possible soil Cd enrichment comparing its concentration at two different depths, and (iii) compare the threshold values for Cd calculated applying different statistical techniques with soil guideline values (SGV) as defined in Croatia and other national systems in Europe. The four statistical methods (the mean ± 2 standard deviations [mean ± 2SD], the median ± 2 median absolute deviations [median ± 2MAD], the (upper) Tukey inner fence (TIF), and the percentile-based approach) were used to establish the threshold values for Cd and identify samples with high Cd concentrations deviating from the background variation in a studied dataset. Overall, 74 samples from the A horizon of Terra Rossa soil were analyzed for aqua regia soluble Cd concentration (CdA); major soil properties—pH, CaCO3, soil organic carbon (SOC) content, P2O5, K2O, and particle-size distribution—were also determined in these samples. The underlying cambic B horizon was analyzed only for Cd concentration (CdB) The median CdA and CdB values of 1.84 and 1.70 mg kg–1, respectively as well as the maximum value of 8.53 mg kg–1 in the A horizon and 7.56 mg kg–1 in the B horizon obtained in this study attested to anomalously high Cd concentrations. The median CdA/CdB ratio was close to unity (1.07) indicating very low Cd enrichment in the A horizon. The [median ± 2MAD] method achieved the lowest threshold Cd value of 4.68 mg kg–1 and, consequently, a maximum number of outliers; it was followed by the classical [mean ± 2SD] method (5.01 mg kg–1), the Q95th percentile (5.29 mg kg–1), the Q98th percentile (5.64 mg kg–1), and the TIF method with the highest threshold value of 6.93 mg kg–1. All specified threshold values for Cd concentration repeatedly exceeded the maximum admissible concentrations (MACv) for agricultural land as defined in soil guideline values developed in Croatia and in several countries of the European Union. These findings indicate that more attention should be paid to the unusually high Cd concentrations in Terra Rossa soils originating from the natural sources; a more detailed geochemical survey of these soils should be performed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig 3.

Similar content being viewed by others

REFERENCES

  1. B. J. Alloway, “Cadmium” in Heavy Metals in Soils, Ed. by B. J. Alloway (Blackie Academic and Professional, London, 1995), pp. 122–147.

    Book  Google Scholar 

  2. D. Baize and T. Sterckeman, “Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements,” Sci. Total Environ. 264 (1–2), 127–139 (2001). https://doi.org/10.1016/S0048-9697(00)00615-X

    Article  Google Scholar 

  3. A. Bellanca, S. Hauser, R. Neri, and B. Palumbo, “Mineralogy and geochemistry of Terra Rossa soils, western Sicily: insights into heavy metal fractionation and mobility,” Sci. Total Environ. 193 (1), 57–67 (1996). https://doi.org/10.1016/S0048-9697(96)05336-3

    Article  Google Scholar 

  4. C. Bini, G. Sartori, M. Whasha, and S. Fontana, “Background levels of trace elements and soil geochemistry at regional level in NE Italy,” J. Geochem. Explor. 109 (1–3), 125-133 (2011). http://dx.doi.org/10.1016%2Fj.gexplo.2010.07.008.

    Article  Google Scholar 

  5. M. Birke, C. Reimann, K. Oorts, U. Rauch, A. Demetriades, E. Dinelli, A. Ladenberger, J. Halamić, M. Gosar, F. Jähne-Klingberg, et al., “Use of GEMAS data for risk assessment of cadmium in European agricultural and grazing land soil under the REACH regulation,” Appl. Geochem. 74, 109–121 (2016). https://doi.org/10.1016/j.apgeochem.2016.08.014

    Article  Google Scholar 

  6. P. Blaser, S. Zimmermann, J. Luster, and W. Shotyk, “Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils,” Sci. Total Environ. 249 (1–3), 257–280 (2000). https://doi.org/10.1016/S0048-9697(99)00522-7

    Article  Google Scholar 

  7. C. Carlon, M. D’Alessandro, and F. Swartjes, Derivation Methods of Soil Screening Values in Europe: A Review and Evaluation of National Procedures towards Harmonization (European Commission, Joint Research Centre, Ispra, 2007), No. EUR 22805- En.

  8. D. R. Cohen, N. F. Rutherford, E. Morisseau, and A. M. Zissimos, “Geochemical patterns in the soils of Cyprus,” Sci. Total Environ. 420, 250–262 (2012). https://doi.org/10.1016/j.scitotenv.2012.01.036

    Article  Google Scholar 

  9. W. de Vos, V. Gregorauskiene, K. Marsina, R. Salminen, I. Salpeteur, T. Tarvainen, P. J. O’Connor, A. Demetriades, S. Pirc, M. J. Batista, M. Bidovec, A. Bel-lan, M. Birke, N. Breward, B. De Vivo, et al., “Distribution of elements in subsoil and topsoil,” in Geochemical Atlas of Europe, Part 2: Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications, Ed. by W. De Vos and T. Tarvainen (Geological Survey of Finland, Espoo, 2006), pp. 21–29.

  10. T. T. Dung, V. Cappuyns, R. Swennen, and N. K. Phung, “From geochemical background determination to pollution assessment of heavy metals in sediments and soils,” Rev. Environ. Sci. Biotechnol. 12 (4), 335–353 (2013). https://doi.org/10.1007/s11157-013-9315-1

    Article  Google Scholar 

  11. H. Egnér, H. Riehm, and W.R. Domingo, “Untersuchungen uber die chemische Bodenanalyse als Grundlage fur die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung,” K. Lantbrukshoegsk. Ann. 26, 199–215 (1960)

    Google Scholar 

  12. A. Facchinelli, E. Sacchi, and L. Mallen, “Multivariate statistical and GIS-based approach to identify heavy metal sources in soils,” Environ. Pollut. 114 (3), 313–324 (2001). https://doi.org/10.1016/S0269-7491(00)00243-8

    Article  Google Scholar 

  13. E. Galán, J. C. Fernández-Caliani, I. González, P. Aparicio, and A. Romero, “Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South-West Spain,” J. Geochem. Explor. 98 (3), 89–106 (2008). https://doi.org/10.1016/j.gexplo.2008.01.001

    Article  Google Scholar 

  14. A. Gałuszka, “A review of geochemical background concepts and an example using data from Poland,” Environ. Geol. 52 (5), 861–870 (2007). https://doi.org/10.1007/s00254-006-0528-2

    Article  Google Scholar 

  15. A. Gałuszka and Z. M. Migaszewski, “Geochemical background – an environmental perspective,” Mineralogia 42 (1), 7–17 (2011). https://doi.org/10.2478/v10002-011-0002-y

    Article  Google Scholar 

  16. J. Halamić and S. Miko, Geochemical Atlas of the Republic of Croatia, Ed. by J. Halamić and S. Miko (Croatian Geological Survey, Zagreb, 2009).

  17. V. J. G. Houba, J. Uittenbogaard, and P. Pellen, “Wageningen evaluating programmes for analytical laboratories (WEPAL), organization and purpose,” Commun. Soil Sci. Plant Anal. 27 (3–4), 421–431 (1996). https://doi.org/10.1080/00103629609369565

    Article  Google Scholar 

  18. P. J. Huber, Robust Statistics (Wiley, New York, 1981).

    Book  Google Scholar 

  19. ISO 10693:1995—Soil Quality, Determination of Carbonate Content, Volumetric Method (International Organization for Standardization, Geneva, 1995).

  20. ISO 10390:2005—Soil Quality, Determination of pH (International Organization for Standardization, Geneva, 2005).

  21. ISO 11277:2009—Soil Quality, Determination of Particle Size Distribution in Mineral Soil Material, Method by Sieving and Sedimentation (International Organization for Standardization, Geneva, 2009).

  22. ISO 14235:1998—Soil Quality, Determination of Organic Carbon by Sulfochromic Oxidation (International Organization for Standardization, Geneva, 1998).

  23. ISO 11466: 1995—Soil Quality, Extraction of Trace Elements Soluble in Aqua Regia (International Organization for Standardization, Geneva, 1995).

  24. ISO 19258:2018—Soil Quality, Guidance on the Determination of Background Values (International Organization for Standardization, Geneva, 2018).

  25. IUSS Working Group, World Reference Base for Soil Resources, World Soil Resource Report No. 103 (Food and Agricultural Organization, Rome, 2014).

  26. J. Jarva, T. Tarvainen, J. Reinikainen, and M. Eklund, “TAPIR—Finnish national geochemical baseline database,” Sci. Total Environ. 408 (20), 4385–4395 (2010). https://doi.org/10.1016/j.scitotenv.2010.06.050

    Article  Google Scholar 

  27. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, FL, 1992)

    Google Scholar 

  28. A. Kabata-Pendias and H. Pendia, Trace Element in Soil and Plants (CRC Press, Boca Raton, FL, 2001).

    Google Scholar 

  29. W. Köppen, “Klassifikation der Klimate nach Temperatur” Niederschlag und Jahreslauf,” Petermanns Geogr. Mitt. 64, 193–203 (1918).

    Google Scholar 

  30. I. Massas, C. Ehliotis, S. Gerontidis, and E. Sarris, “Elevated heavy metal concentrations in top soils of an Aegean island town (Greece): total and available forms, origin and distribution,” Environ. Monit. Assess. 151 (1–4) 105–116 (2009). https://doi.org/10.1007/s10661-008-0253-2

    Article  Google Scholar 

  31. J. Matschullat, R. Ottenstein, and C. Reimann, “Geochemical background—Can we calculate it?” Environ. Geol. 39 (9), 990–1000 (2000). https://doi.org/10.1007/s002549900084

    Article  Google Scholar 

  32. R. McIlwaine, S. Cox, R. Doherty, S. Palmer, U. Ofterdinger, and J.M. McKinley, “Comparison of methods used to calculate typical threshold values for potentially toxic elements in soil,” Environ. Geochem. Health 36 (5), 953–971 (2014). https://doi.org/10.1007/s10653-014-9611-x

    Article  Google Scholar 

  33. Government Decree on the Assessment of Soil Contamination and Remediation Needs (Ministry of the Environment of Finland, Helsinki, 2007), No. 214/2007.

  34. S. Miko, J. Halamić, Z. Peh, and J. Galović, “Geochemical baseline mapping of soils developed on diverse bedrock from two regions in Croatia,” Geol. Croat. 54 (1), 53–118 (2001).

    Google Scholar 

  35. Official Gazette Regulation on Protection of Agricultural Land in the Republic of Croatia: Narodne Novine–NN 9/14 (Zagreb, 2014) [in Croatian].

  36. B. Palumbo, M. Angelone, A. Bellanca, C. Dazzi, S. Hauser, R. Neri, and J. Wilson, “Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy,” Geoderma 95 (3–4) 247–266 (2000). https://doi.org/10.1016/S0016-7061(99)00090-7

    Article  Google Scholar 

  37. J. Pamić, I. Gušić, and V. Jelaska, “Geodynamic evolution of the Central Dinarides,” Tectonophysics 297 (1–4) 251–268 (1998). https://doi.org/10.1016/S0040-1951(98)00171-1

    Article  Google Scholar 

  38. Z. Peh, S. Miko, and D. Bukovec, “The geochemical background in Istrian soils,” Nat. Croat. 12 (4), 195–232 (2003).

    Google Scholar 

  39. C. Rambeau, Thèse de Doctorat (Université de Neuchâtel, Neuchâtel, 2006)

  40. C. M. C Rambeau, D. Baize, N. Saby, V. Matera, T. Adatte, and K. B. Föllmi, “High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soil: a case study in Lower Burgundy, France,” Environ. Earth Sci. 61, 1573–1585 (2010). https://doi.org/10.1007/s12665-010-0471-0

    Article  Google Scholar 

  41. C. Reimann, U. Siewers, T. Tarvainen, L. Bityukova, J. Eriksson, A. Gilucis, et al., Agricultural Soils in Northern Europe: A Geochemical Atlas, Ed. by D. Reihe (Geologisches Jahrbuch, Stuttgart, 2003)

    Google Scholar 

  42. C. Reimann and R.G. Garrett, “Geochemical background—concept and reality,” Sci. Total Environ. 350 (1–3), 12–27 (2005). https://doi.org/10.1016/j.scitotenv.2005.01.047

    Article  Google Scholar 

  43. C. Reimann, P. Filzmoser, and R.G. Garrett, “Background and threshold: critical comparison of methods of determination,” Sci. Total Environ. 346 (1–3), 1–16 (2005). https://doi.org/10.1016/j.scitotenv.2004.11.023

    Article  Google Scholar 

  44. C. Reimann and P. de Caritat, “Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry,” Environ. Sci. Technol. 34 (24) 5084–5091 (2000). https://doi.org/10.1021/es001339o

    Article  Google Scholar 

  45. C. Reimann and P. de Caritat, “Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors,” Sci. Total Environ. 337 (1–3), 91–107 (2005). https://doi.org/10.1016/j.scitotenv.2004.06.011

    Article  Google Scholar 

  46. C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter, Statistical Data Analysis Explained. Applied Environmental Statistics (Wiley, Chichester, 2008).

    Book  Google Scholar 

  47. C. Reimann, A. Demetriades, O. A. Eggen, and P. Filzmoser, The EuroGeoSurveys Geochemical Mapping of Agricultural and grazing land Soils project (GEMAS): NGU-Rapport 2011.043 (Geological Survey of Norway, Trondheim, 2011).

    Google Scholar 

  48. C. Reiman, K. Fabian, J. Schilling, D. Roberts, and P. Englmaier, “A strong enrichment of potentially toxic elements (PTEs) in Nord Trøndelag (central Norway) forest soil,” Sci. Total Environ. 536, 130–141 (2015). https://doi.org/10.1016/j.scitotenv.2015.07.032

    Article  Google Scholar 

  49. C. Reimann and P. de Caritat, “Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil,” Sci. Total Environ. 578, 633–648 (2017). https://doi.org/10.1016/j.scitotenv.2016.11.010

    Article  Google Scholar 

  50. C. Reimann, K. Fabian, M. Birke, P. Filzmoser, A. Demetriades, P. Negrel, K. Oorts, J. Matschullat, P. de Caritat, et al., “GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil,” Appl. Geochem. 88, 302–318 (2018). https://doi.org/10.1016/j.apgeochem.2017.01.021

    Article  Google Scholar 

  51. R. Salminen and T. Tarvainen, “The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland,” J. Geochem. Explor. 60 (1), 91–98 (1997). https://doi.org/10.1016/S0375-6742(97)00028-9

    Article  Google Scholar 

  52. R. Salminen, M. J. Batista, M. Bidovec, A. Demetriades, B. De Vivo, W. De Vos, M. Duris, A. Gilucis, V. Gregorauskiene, J. Halamić, P. Heitzmann, A. Lima, G. Jordan, G. Klaver, P. Klein, et al., Geochemical Atlas of Europe. Part 1—Background Information, Methodology and Maps (Geological Survey of Finland, Espoo, 2005)

    Google Scholar 

  53. Soil Survey Division Staff Soil Survey Manual: USDA Handbook No. 18 (U.S. Government Printing Office, Washington, 1993)

  54. J. Sucharovà, I. Suchara, M. Hola, S. Marikova, C. Reimann, R. Boyd, P. Filzmoser, and P. Englmaier, “Top-/bottom-soil ratios and enrichment factors: What do they really show?” Appl. Geochem. 27 (1) 138–145 (2012). https://www.sciencedirect.com/science/article/ pii/S088329271100415X. https://doi.org/10.1016/j.apgeochem.2011.09.025

    Article  Google Scholar 

  55. A. Škorić, G. Filipovski, and M. Ćirić, Soil Classification of Yugoslavia (Academy of Sciences and Arts of Bosnia and Herzegovina, Sarajevo, 1985)

    Google Scholar 

  56. A. Škorić, M. Adam, F. Bašić, M. Bogunović, D. Cestar, J. Martinović, B. Mayer, B. Miloš, and Ž. Vidaček, Pedosphere of Istria (Projektni savjet Pedološke karte Hrvatske, Zagreb, 1987)

  57. S. Temur, H. Orhan, and A. Deli, “Geochemistry of the limestone of Mortas Formation and related terra rossa, Seydisehir, Konya, Turkey,” Geochem. Int. 47 (1), 67–93 (2009). https://doi.org/10.1134/S0016702909010054

    Article  Google Scholar 

  58. J. W. Tukey, Exploratory Data Analysis (Addison Wesley, Reading, MA, 1977)

    Google Scholar 

  59. Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles, A Report of the Working Group on the Global Metal Flows (International Resource Panel, Nairobi, 2013).

  60. W. Verheye and J. Ameryckx, “Mineral fractions and classification of soil texture,” Pedologie 34 (2), 215–225 (1984).

    Google Scholar 

  61. S. Vingiani, E. Di Iorio, C. Colombo, and F. Terribile, “Integrated study of Red Mediterranean soils from Southern Italy,” Catena 168, 129–140 (2018). https://doi.org/10.1016/j.catena.2018.01.002

    Article  Google Scholar 

  62. C. L. Yang, Z. F. Wu, H. H. Zhang, R. P. Guo, and Y. Q. Wu, “Risk assessment and distribution of soil Pb in Guandong, China,” Environ. Monit. Assess. 159 (1–4), 381–391 (2009). https://doi.org/10.1007/s10661-008-0636-4

    Article  Google Scholar 

  63. S. Yamasaki, A. Takeda, K. Nunohara, and N. Tsuchiya, “Red soils derived from limestone contain higher amounts of trace elements than those derived from various other parent materials,” Soil Sci. Plant Nutr. 59 (5), 692–699 (2013). https://doi.org/10.1080/00380768.2013.822301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bensa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miloš, B., Bensa, A. Background Variation and Threshold Values for Cadmium Concentration in Terra Rossa Soil from Dalmatia, Croatia. Eurasian Soil Sc. 52, 1622–1631 (2019). https://doi.org/10.1134/S1064229319120111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319120111

Keywords:

Navigation