Skip to main content
Log in

Study of a high SO2 event observed over an urban site in western India

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Continuous measurements of SO2, NOx and O3 along with sampling based measurements of CO, CH4, NMHCs and CO2 were carried out during May, 2010 at Ahmedabad. The diurnal variations of SO2 in ambient air exhibited elevated values during the night and lower levels during the sunlit hours. The mean concentration of SO2 during the study period was 0.95 ± 0.88 ppbv. However, the ambient SO2 exceeded 17 ppbv in the night of 20 May, 2010. On the same day, tropospheric columnar SO2 from OMI showed almost 350% increase corroborating the surface observations over an extended height regime. This was also the highest columnar value of SO2 during the summer of 2010. Columnar loadings were also found to be high for formaldehyde, precipitable water vapor and aerosol optical depth on 20 May. Elevated concentrations were also recorded for other trace gases like NO2 and O3. Analysis of related data of trace gases indicated characteristics of fresh emissions with dominant contributions from mobile sources during the study period. However, SO2/NO2 ratio of 0.36 during the event period on 20th May connotes non-local influences. Analyses of meteorological parameters suggest combined impacts of transport and inversion causing higher levels of SO2 and other pollutants during 20–21 May. Episodes of such enhancements may perturb chemical and radiative balance of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikary, B., G. R. Carmichael, Y. Tang, L. R. Leung, Y. Qian, J. J. Schauer, E. A. Stone, V. Ramanathan, and M. V. Ramana, 2007: Characterization of the seasonal cycle of south Asian aerosols: A regional-scale modeling analysis. J. Geophys. Res. 112, D22S22, doi: 10.1029/2006JD008143.

    Article  Google Scholar 

  • Aneja, V. P., A. Agarwal, P. A. Roelle, S. B. Phillips, Q. Tong, N. Watkins, and R. Yablonsky, 2001: Measurements and Analysis of Criteria Pollutants in New Delhi, India, Environ. Int. 27, 35–42.

    Article  Google Scholar 

  • Angelo L. D., and B. Black, 2008: “London smog disaster, England”, In: Encyclopedia of Earth. Eds. Cutler J. Cleveland. http://www.eoearth.org/article/London_smog_disaster,_England.

  • Asatar, G. I., and P. R. Nair, 2010: Spatial distribution of near-surface CO over Bay of Bengal during winter: role of transport, J. Atmos. Sol.-Terr. Phys. 72, 1241–1250.

    Article  Google Scholar 

  • Ashbaugh, L. L., W. C. Malm, and W. D. Sadeh, 1985: A residence time probability analysis of sulfur concentrations at Grand Canyon National Park, Atmos. Environ. 19, 1263–1270.

    Article  Google Scholar 

  • Baker, A. K., T. J. Schuck, F. Slemr, P. van Velthoven, A. Zahn, and C. A. M. Brenninkmeijer, 2011: Characterization of non-methane hydrocarbons in Asian summer monsoon outflow ob-served by the CARIBIC aircraft, Atmos. Chem. Phys., 11, 503–518, doi:10.5194/acp-11-503-2011.

    Article  Google Scholar 

  • Begum, B. A., E. Kim, C. H. Jeong, D. W. Lee, and P. K. Hopke, 2005: Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode, Atmos. Environ. 39, 3719–3724.

    Article  Google Scholar 

  • Chameides, W. L., P. S. Kasibhatla, J. Yienger, and H. Levy, 1994: Growth of continental scale Metro-Agro-Plexes, regional ozone pollution and world food production, Science, 264, 74–77.

    Article  Google Scholar 

  • Curci, G., P. I. Palmer, T. P. Kurosu, K. Chance, and G. Visconti, 2010: Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument, Atmos. Chem. Phys. Discuss. 10, 19697. doi: 10.5194/acpd-10-19697-2010.

    Article  Google Scholar 

  • Datta, A., T. Saud, A. Goel, S. Tiwari, S. K. Sharma, M. Saxena, and T. K. Mandal, 2011: Variation of ambient SO2 over Delhi, J. Atmos. Chem. doi: 10.1007/s10874-011-9185-2.

  • Garg, A., P. R. Shukla, S. Bhattacharya, and V. K. Dadhwal, 2001: Subregion (district) and sector level SO2 and NOx emissions for India: Assessment of inventories and mitigation flexibility, Atmos. Environ. 35, 703–713.

    Article  Google Scholar 

  • _____, M. Kapshe, P. R. Shukla, and D. Ghosh, 2002: Large point source (LPS) emissions from India: regional and sectoral analysis, Atmos. Environ. 36(2), 213–224.

    Article  Google Scholar 

  • _____, P. R. Shukla, and M. Kapshe, 2006: The sectoral trends of multigas emissions inventory of India, Atmos. Environ., 40, 4608–4620.

    Article  Google Scholar 

  • Gregory, G. L., A. S. Bachmeier, D. R. Blake, B. G. Heikes, D. C. Thornton, A. R. Bandy, J. D. Bradshaw, and Y. Kondo, 1996: Chemical signatures of aged Pacific marine air mixed layer and free troposphere as measured during PEM-West A, J. Geophys. Res., 101, 1727–1742.

    Article  Google Scholar 

  • Gupta, A. K., R. S. Patil, and S. K. Gupta, 2003: A Long-Term Study of Oxides of Nitrogen, Sulphur Dioxide, and Ammonia for a Port and Harbor Region in India, J. Environ. Sc. Healt., Part A, 38,12, 2877–2894.

    Article  Google Scholar 

  • Gurjar, B. R., A. Jain, A. Sharma, A. Agarwal, P. Gupta, A. S. Nagpure, and J. Lelieveld, 2010: Human health risks in megacities due to air pollution, Atmos. Environ., 44, 4606–4613.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 996 pp.

    Google Scholar 

  • Krishnan, P., and P. K. Kunhikrishnan, 2004: Temporal variations of ventilation coefficient at a tropical Indian station using UHF wind profiler, Curr. Sci., 86(3), 447–451.

    Google Scholar 

  • Kumar, M., C. Mallik, A. Kumar, N. C. Mahanti, and A. M. Shekh, 2010: Evaluation of the boundary layer depth in semi-arid region of India, Dyn. Atmos. Ocean., 49, 96–107.

    Article  Google Scholar 

  • Kumar, R., A. Gupta, K. M. Kumari, and S. S. Srivastava, 2004: Simultaneous measurements of SO2, NO2, HNO3 and NH3: seasonal and spatial variations, Curr. Sc., 87(8), 1108–1115.

    Google Scholar 

  • Lal, S., 2007: Trace gases over the Indian region, Ind. J. Rad. & Spa. Phy., 36, 556–570.

    Google Scholar 

  • _____, L. K. Sahu, S. Gupta, S. Srivastava, K. Modh, S. Venkataramani, and T. A. Rajesh, 2008: Emission characteristic of ozone related trace gases at a semi-urban site in the Indo-Gangetic plain using intercorrelations, J. Atmos. Chem., 60, 189–204.

    Article  Google Scholar 

  • Lee, C., R. V. Martin, A. V., Donkelaar, H, Lee, R. R. Dickerson, J. C. Hains, N. Krotkov, A. Richter, K. Vinnikov, and J. J. Schwab, 2011: SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations, J. Geophys. Res., 116, D06304, doi:10.1029/2010JD014758.

    Article  Google Scholar 

  • Li, G., N. Bei, X. Tie, and L. T. Molina, 2011: Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO cam paign, Atmos. Chem. Phys. Discuss., 11, 8625–8664.

    Article  Google Scholar 

  • Lu, Z., and D. G. Streets, 2011: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys. Discuss., 11, 20267–20330.

    Article  Google Scholar 

  • McKeen, S. A., and S. C. Liu, 1993: Hydrocarbon ratios and photochemical history of air masses,. Geophys. Res. Lett., 20, 2363–2366.

    Article  Google Scholar 

  • Mittal, S. K., N. Singh, R. Agarwal, I. A. Awasth, and P. K. Gupta, 2009: Ambient air quality during wheat and rice straw stubble crop burning episodes in Patiala, Atmos. Environ., 43, 238–244.

    Article  Google Scholar 

  • Reddy, R. R., K. R. Gopal, K. Narasimhulu, L. S. S. Reddy, K. R. Kumar, Y. N. Ahammed, V. Vinoj, and S. K. Satheesh, 2008: Measurement of CO and SO2 trace gases in the southern India during ISRO-GBP Land Campaign-I, Indian J. Rad and Spac. Phy., 37, 157–173.

    Google Scholar 

  • Rubin, J. I., A. J. Kean, R. A. Harley, D. B. Millet, and A. H. Goldstein 2006: Temperature dependence of volatile organic compound evaporative emissions from motor vehicles, J. Geophys. Res., 111, D03305, doi:10.1029/2005JD006458.

    Article  Google Scholar 

  • Sahu, L., and S. Lal, 2006: Distributions of C2–C5 NMHCs and related trace gases at a tropical urban site in India, Atmos. Environ., 40, 880–891.

    Article  Google Scholar 

  • Scheff, P. A., and A. Wadden, 1993: Receptor modeling of volatile organic compound. Emission inventory and validation. Environ. Sci. Tech., 27, 617–625.

    Article  Google Scholar 

  • Smyth, S., and Coauthors, 1996: Comparison of free tropospheric western Pacific air mass classification schemes for the PEM-West A experiment, J. Geophys. Res., 101(D1), 1743–1762.

    Article  Google Scholar 

  • Stavrakou, T., J. F. Müller, I. D. Smedt, M. V. Roozendael, G. R. V. Werf, L. Giglio, and A. Guenther, 2009: Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns, Atmos. Chem. Phys., 9(3), 1037. doi: 10.5194/acp-9-1037-2009.

    Article  Google Scholar 

  • Streets, D. G., T. C. Bond, G. R. Carmichael, S. D. Fernandes, Q. Fu, and D. He, 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108(D21), 8809. doi:10.1029/ 2002JD003093D.

    Article  Google Scholar 

  • Wang, T., A. J. Ding, D. R. Blake, W. Zahorowski, C. N. Poon, and Y. S. Li, 2003: Chemical characterization of the boundary layer outflow of air pollution to Hong Kong during February April 2001, J. Geophys. Res., 108(D20), 8787. doi: 10.1029/2002JD003272.

    Article  Google Scholar 

  • Wang, Y. Q., X. Y. Zhang, and R. Draxler, 2009: TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data, Environ. Modelling & Software, 24, 938–939.

    Article  Google Scholar 

  • WHO, 2005: Air quality guidelines for particulate matter, ozone, nitrogen, dioxide and sulfur dioxide, Global update 2005. WHO/SDE/PHE/OEH/06.02. http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf.

  • Xie, M., T. J. Wang, and L. J. Gao, 2004: Study on the characteristics of a photochemical pollution episode in Hong Kong, J. Trop. Meteor., 20(4), 433–442.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmay Mallik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallik, C., Venkataramani, S. & Lal, S. Study of a high SO2 event observed over an urban site in western India. Asia-Pacific J Atmos Sci 48, 171–180 (2012). https://doi.org/10.1007/s13143-012-0017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-012-0017-3

Key words

Navigation