Skip to main content

Advertisement

Log in

Diurnal, seasonal and weekdays–weekends variations of ground level ozone concentrations in an urban area in greater Cairo

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ground level ozone (O3) concentration was monitored during the period of December 2004 to November 2005 in an urban area in Greater Cairo (Haram, Giza). During the winter and summer seasons, nitrogen dioxide (NO2) and nitric oxide (NO) concentrations and meteorological parameters were also measured. The mean values of O3 were 43.89, 65.30, 91.30 and 58.10 ppb in daytime and 29.69, 47.80, 64.00 and 42.70 ppb in whole day (daily) during the winter, spring, summer and autumn seasons, respectively. The diurnal cycles of O3 concentrations during the four seasons revealed a uni-modal peak in the mid-day time, with highest O3 levels in summer due to the local photochemical production. The diurnal variations in NO and NO2 concentrations during the winter and summer showed two daily peaks linked to traffic density. The highest levels of NOx were found in winter. Nearly, 75%, 100%, 34.78% and 52.63% of the mean daytime concentrations of O3 during spring, summer, autumn and the whole year, respectively, exceeded the Egyptian and European Union air quality standards (60 ppb) for daytime (8-h) O3 concentration. About, 41.14% and 10.39% of the daytime hours concentrations and 14.93% and 3.77% of the daily hour concentrations in summer and the whole year, respectively, exceeded the Egyptian standard (100 ppb) for maximum hourly O3 concentration, and photochemical smog is formed in the study area (Haram) during a periods represented by the same percentages. This was based on the fact that photochemical smog usually occurs when O3 concentration exceeds 100 ppb. The concentrations of O3 precursors (NO and NO2) in weekends were lower than those found in weekdays, whereas the O3 levels during the weekends were high compared with weekdays. This finding phenomenon is known as the “weekend effect”. Significant positive correlation coefficients were found between O3 and temperature in both seasons and between O3 and relative humidity in summer season, indicating that high temperature and high relative humidity besides the intense solar radiation (in summer) are responsible for the formation of high O3 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modeling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software, 20, 1263–1271.

    Article  Google Scholar 

  • Altshuler, A. P. (1975). SO2 and oxidants in air, in: Fate of Pollutants in the Air and Water Environment, vol. 2. Wiley-Interscience Publication, pp. 26–30.

  • Altshuler, S. L., Arcado, T. D., & Lawson, D. R. (1995). Weekday vs. weekend ambient ozone concentrations: discussion and hypotheses with focus on northern California. Journal of the Air and Waste Management Association, 45, 967–972.

    CAS  Google Scholar 

  • Alvim-Ferraz, M. C. M., Sousa, S. I. V., Pereira, M. C., & Martins, F. G. (2006). Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century. Environmental Pollution, 140, 516–524.

    Article  CAS  Google Scholar 

  • Atkinson-Palombo, C. M., Miller, J. A., & Balling, R. C., Jr. (2006). Quantifying the ozone “weekend effect” at various locations in Phoenix, Arizona. Atmospheric Environment, 40, 7644–7658.

    Article  CAS  Google Scholar 

  • Barros, N. (1999). Poluicão Atmosférica por foto-oxidantes: o ozono troposférico na região de Lisboa, PhD thesis. Aveiro: Universidade de Aveiro.

    Google Scholar 

  • Bower, J. S., Broughton, G. F. J., Dando, M. T., Stevenson, K. J., Lampert, J. E., Sweeney, B. P., et al. (1989). Surface ozone concentrations in the U.K. in 1987–1988. Atmospheric Environment, 23, 2003–2016.

    Article  CAS  Google Scholar 

  • Brankov, E., Henry, R., Civerolo, K., Hao, W., Rao, S. T., Misra, P., et al. (2003). Assessing the effects of transboundary ozone pollution between Ontario, Canada and New York, USA. Environmental Pollution, 123, 403–411.

    Article  CAS  Google Scholar 

  • Brauer, M., & Brook, J. R. (1997). Ozone personal exposure and health effect for selected groups residing in the Fraser Valley. Atmospheric Environment, 31, 2113–2121.

    Article  CAS  Google Scholar 

  • Brönnimann, S., Buchmann, B., & Wanner, H. (2002). Trends in near-surface ozone concentrations in Switzerland: the 1990s. Atmospheric Environment, 36, 2841–2852.

    Article  Google Scholar 

  • CARB (2003). The ozone weekend effect in California’, Staff Report, The Planning and Technical Support Division, The Research Division, California Air Resources Board, Sacramento, CA, 30th May.

  • Crutzen, P. J. (1974). Photochemical reaction initiated by and influencing ozone in unpolluted tropospheric air. Tellus, 26, 44–55.

    Article  Google Scholar 

  • Derwent, R. G., & Davies, T. J. (1994). Modeling the impact of NOx or hydrocarbon control on photochemical ozone in Europe. Atmospheric Environment, 28, 2039–2052.

    Article  CAS  Google Scholar 

  • Derwent, R. G., Jenkin, M. E., Saunders, S. M., Pilling, M. J., Simmonds, P. G., Passant, N. R., et al. (2003). Photochemical ozone formation in North West Europe and its control. Atmospheric Environment, 37, 1983–1991.

    Article  CAS  Google Scholar 

  • Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2002). Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. Science of the Total Environment, 299, 97–113.

    Article  Google Scholar 

  • EEA (1998). Tropospheric Ozone in the European Union-the Consolidated Report (Topic report n° 8/1998). Copenhagen: European Environment Agency.

    Google Scholar 

  • EEAA: Egyptian Environmental Affairs Agency (1994). Environmental Protection Low No. 4, EEAA, Cairo, 1995.

  • Garcia, M. A., Sánchez, M. L., Pérez, I. A., & de Torre, B. (2005). Ground level ozone concentrations at a rural location in northern Spain. Science of the Total Environment, 348, 135–150.

    Article  CAS  Google Scholar 

  • Gong, Q., & Demerjian, K. L. (1997). Measurement and analysis of C2–C10 hydrocarbons at Whiteface Mountain, New York. Journal of Geophysical Research, 102, 28059–28069.

    Article  CAS  Google Scholar 

  • Guicherit, R., Jelters, R., & Lindquiate, F. (1972). Determination of ozone concentration in outdoor air near Delft, the Nether Land. Environmental Pollution, 3, 91–110.

    Article  CAS  Google Scholar 

  • Guicherit, R., & Roemer, M. (2000). Tropospheric ozone trends. Chemosphere-Global Change Science, 2, 167–183.

    Article  CAS  Google Scholar 

  • Harrison, R. M., & Perry, R. (1986). Handbook of Air Pollution Analysis (2nd ed.). New York: Chapman and Hall, London.

    Google Scholar 

  • Hastie, D. R., Narayn, J., Sciller, C., Niki, H., Hepson, P. B., Sills, D., et al. (1999). Observational evidence for the impact of the lake breeze circulation on ozone concentrations in Southern Ontario. Atmospheric Environment, 33, 323–335.

    Article  CAS  Google Scholar 

  • Hassan, S. K. M. (2000). A study on indoor air quality in Greater Cairo, M.Sc. Thesis. Egypt: Cairo University.

    Google Scholar 

  • Heuss, J. M., Kahlbaum, D. F., & Wolff, G. T. (2003). Weekday/weekend ozone differences: what can we learn them? Journal of the Air and Waste Management Association, 53, 772–788.

    CAS  Google Scholar 

  • Hogsett, W. E., Weber, J. E., Tingey, D. T., Herstrom, A. A., Lee, E. H., & Laurence, J. A. (1997). An approach for characterizing tropospheric ozone risk to forests. Environmental Management, 21, 105–120.

    Article  Google Scholar 

  • IPCC (2001). Climate Change, 2001, The Scientific Basis, Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, 944pp.

  • Jiménez, P., Parra, R., Gassó, S., & Baldasano, J. M. (2005). Modeling the ozone weekend effect in very complex terrains: a case study in the Northwestern Iberian Peninsula. Atmospheric Environment, 39, 429–444.

    Article  CAS  Google Scholar 

  • Khoder, M. I. (1997). Assessment of some air pollutants in Cairo and their role in atmospheric photochemistry, Ph.D. Thesis. Egypt: Ain Shams University.

    Google Scholar 

  • Khoder, M. I. (2002). Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere, 49, 675–684.

    Article  CAS  Google Scholar 

  • Khoder, M. I. (2004). Atmospheric formation and occurrence of nitrous acid and its role in the formation of ozone in the city centre in Cairo, Egypt. Egyptian Journal of Chemistry, 47, 189–209.

    CAS  Google Scholar 

  • Khoder, M. I. (2007). Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmospheric Environment, 41, 554–566.

    Article  CAS  Google Scholar 

  • Kimura, Y., McDonald-Buller, E., Vizuete, W., & Allen, D. T. (2008). Application of a Lagrangian Process Analysis tool to characterize ozone formation in Southeast Texas. Atmospheric Environment (in press).

  • Kleinman, L. I., Daum, P. H., Lee, Y. N., Nunnermacker, L. J., Springston, S. R., Weinstein-LIoyd, J., et al. (2001). Sensitivity of O3 production rate to O3 precursors. Geophysical Research Letters, 28, 2903–2906.

    Article  CAS  Google Scholar 

  • Kley, D., Kleinmann, M., Sanderman, H., & Krupa, S. (1999). Photochemical oxidants: State of the science. Environmental Pollution, 100, 19–42.

    Article  CAS  Google Scholar 

  • Kourtidis, K. A., Ziomas, I., Zerefos, C., Kosmidis, E., Symeonidis, P., Christophilopoulos, E., et al. (2002). Benzene, toluene, ozone, NO2 and SO2 measurements in an urban street canyon in Thessaloniki, Greece. Atmospheric Environment, 36, 5355–5364.

    Article  CAS  Google Scholar 

  • Krupa, S. V. (1997). Air Pollution, People and Plants, American Phytopathological Society Press, p. 197.

  • LaI, S., Naja, M., & Subbaraya, B. H. (2000). Seasonal variations in surface ozone and its precursors over an urban site in India. Atmospheric Environment, 34, 2713–2724.

    Article  Google Scholar 

  • Laurila, T. (1999). Observational study of transport and photochemical formation of ozone over northern Europe. Journal of Geochemical Research, 104, 26235–26243.

    CAS  Google Scholar 

  • Laurila, T., & Lattila, H. (1994). Surface ozone exposure measured in Finland. Atmospheric Environment, 28, 103–114.

    Article  CAS  Google Scholar 

  • Lin, C.-Y. C., Jacob, D. J., & Fiore, A. M. (2001). Trends in exceedences of the ozone air quality standard in continental United States 1980–1998. Atmospheric Environment, 35, 3217–3228.

    Article  CAS  Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., & McElroy, M. B. (1981). Tropospheric chemistry: a global perspective. Journal of Geophysical Research, 86, 7210–7254.

    Article  CAS  Google Scholar 

  • Marr, L. C., & Harley, R. A. (2002a). Modelling the effect of weekday weekend differences in motor vehicle emissions on photochemical pollution in Central California. Environmental Science and Technology, 36, 4099–4106.

    Article  CAS  Google Scholar 

  • Marr, L. C., & Harley, R. A. (2002b). Spectral analysis of weekday weekend differences in ambient ozone, nitrogen oxide and non-methane hydrocarbon time series in California. Atmospheric Environment, 36, 2327–2335.

    Article  CAS  Google Scholar 

  • McKee, D. J. (ed.). (1994). Tropospheric Ozone: Human Health and Agricultural Impacts, Lewis Publishers, Boca Raton, FL.

  • McKendry, I. G. (1993). Ground-level ozone in Montreal, Canada. Atmospheric Environment, 27B, 93–103.

    CAS  Google Scholar 

  • McKendry, I. G. (1996). Photo-chemical Pollution Potential in New Zealand, National Institute of Water and Atmospheric Research, Report AK96076.

  • National Research Council (NRC) (1991). Rethinking the Ozone Problem in Urban and Regional Air Pollution, Committee on Tropospheric Ozone Formation and Measurement. Washington, D.C: National Academy Press.

    Google Scholar 

  • Nevers, N. D. (2000). Air Pollution Control Engineering (pp. 571–573, 2nd ed.). New York: McGraw-Hill Companies, Inc.

    Google Scholar 

  • Olszyna, K. J., Luria, M., & Meagher, J. F. (1997). The correlation of temperature and rural ozone levels in southwestern USA. Atmospheric Environment, 31, 3011–3022.

    Article  CAS  Google Scholar 

  • Ozen, B. F., Mauer, L. J., & Floros, I. D. (2002). Effects of ozone exposure on the structural, mechanical and barrier properties of select plastic packaging film. Packaging Technology and Science, 15, 301–311.

    Article  CAS  Google Scholar 

  • Pandey, J., Agrawal, M., Khanam, N., Narayan, D., & Rao, D. N. (1992). Air pollutant concentrations in Varanasi, India. Atmospheric Environment, 26B, 91–98.

    CAS  Google Scholar 

  • Pereira, M. C., Alvim-Ferraz, M. C. M., & Santos, R. C. (2005). Relevant aspects of air quality in Oporto (Portugal): PM10 and O3. Environmental Monitoring and Assessment, 101, 203–221.

    CAS  Google Scholar 

  • Poulida, O., Dickerson, R. R., Doddridge, B. G., Holland, J. Z., Wardell, R. G., & Watkins, J. G. (1991). Trace gas concentrations and meteorology in rural Virginia: Ozone and carbon monoxide. Journal of Geophysical Research, 96, 22461–22475.

    Article  Google Scholar 

  • Pudasainee, D., Sapkota, B., Shrestha, M. L., Kaga, A., Kondo, A., & Inoue, Y. (2006). Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmospheric Environment, 40, 8081–8087.

    Article  CAS  Google Scholar 

  • Qin, Y., Tonnesen, G. S., & Wang, Z. (2004). One hour and eight hour average ozone in California south coast Air Basin: trends in peak values and sensitivity to precursors. Atmospheric Environment, 38, 2197–2207.

    Article  CAS  Google Scholar 

  • Rao, T. V. R., Reddy, R. R., Sreenivasulu, R., Peeran, S. G., Murthy, K. N. V., Ahammed, Y. N., et al. (2002a). Air space pollutants CO and NOx level at Anantapur (semi-arid zone), Andhra Pradesh. Journal of Indian Geophysical Union, 3, 151–161.

    Google Scholar 

  • Rao, T. V. R., Reddy, R. R., Sreenivasulu, R., Peeran, S. G., Murthy, K. N. V., Ahammed, Y. N., et al. (2002b). Seasonal and diurnal variations in the levels of NOx and CO trace gases at Anantapur in Andhra Pradesh. Journal of Indian Geophysical Union, 3, 163–168.

    Google Scholar 

  • Ribas, A., & Peñuelas, J. (2004). Temporal patterns of surface ozone levels in different habitats of the north western Mediterranean basin. Atmospheric Environment, 38, 985–992.

    Article  CAS  Google Scholar 

  • Rizk, H. F. S. (1992). Effect of solar radiation on surface ozone in Cairo. Ind J Radio Space Phys, 21, 116–118.

    Google Scholar 

  • Rizzo, M., Scheff, P., & Ramakrishnan, V. (2002). Defining the photochemical contribution to particulate matter in urban areas using time-series analysis. Journal of the Air & Waste Management Association, 52, 593–605.

    CAS  Google Scholar 

  • Sadanga, Y., Matsumoto, J., & Kajii, Y. (2003). Photochemical reactions in the urban air: recent understandings of radical chemistry. Journal of Photochemistry and Photobiology, 4, 85–104.

    Article  CAS  Google Scholar 

  • Sakamoto, M., Yoshimura, A., Kosaka, H., & Hiraki, T. (2005). Study on weekend–weekday differences in ambient oxidant concentrations in Hyogo prefecture. Journal of Japan Society of Atmospheric Environment, 40, 201–208.

    CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Changes. USA: Wiley.

    Google Scholar 

  • Stern, A. C. (1968). Air Pollution, volume 11 (2nd ed.). New York: Academic.

    Google Scholar 

  • Thompson, A. M. (1992). The oxidizing capacity of the Earth’s atmosphere: probable past and future changes. Science, 256, 1157–1168.

    Article  CAS  Google Scholar 

  • Thompson, M. L., Reynolds, J., Cox, L. H., Guttorp, P., & Sampson, P. D. (2001). A review of statistical methods for the meteorological adjustment of ozone. Atmospheric Environment, 35, 617–630.

    Article  Google Scholar 

  • Tie, X., Brasseur, G., Zhao, C., Granier, C., Massie, S., Qin, Y., et al. (2006). Chemical characterization of air pollution in Eastern China and the Eastern United States. Atmospheric Environment, 40, 2607–2625.

    Article  CAS  Google Scholar 

  • Tong, D. Q., & Mauzerall, D. L. (2006). Spatial variability of summertime tropospheric ozone over the continental United States: Implications of an evaluation of the CMAQ model. Atmospheric Environment, 40, 3041–3056.

    Article  CAS  Google Scholar 

  • Van Eijkeren, J. C., Freijer, J. I., & Van Bree, L. (2002). A model for the effect on health of repeated exposure to ozone. Environmental Modelling and Software, 17, 553–562.

    Article  Google Scholar 

  • Vecchi, R., & Valli, G. (1999). Ozone assessment in the southern part of the Alps. Atmospheric Environment, 33, 97–109.

    Article  CAS  Google Scholar 

  • Vingarzan, R., & Taylor, B. (2003). Trend analysis of ground level ozone in the greater Vancouver/Fraser Valley area of British Columbia. Atmospheric Environment, 37, 2159–2171.

    Article  CAS  Google Scholar 

  • Vukovich, F. M., & Sherwell, J. (2003). An examination of the relationship between certain meteorological parameters and surface ozone variations in the Baltimore–Washington corridor. Atmospheric Environment, 37, 971–981.

    Article  CAS  Google Scholar 

  • Wang, S. W., & Georgopoulos, P. G. (2001). Observational and Mechanistic studies of tropospheric studies of tropospheric ozone/precursors relations: photochemical models performance evaluation with case study, Technical Report ORC-TR99-03.

  • Wang, X., Lu, W., Wang, W., & Leung, A. (2003). A study of ozone variation trend within area of affecting human health in Hong Kong. Chemosphere, 52, 1405–1410.

    Article  CAS  Google Scholar 

  • Wolff, G. T., Dunker, A. M., Rao, S. T., Porter, P. S., & Zurbeko, I. G. (2001). Ozone air quality over North America: Part 1—a review of reported trends. J. of the Air and Waste Management Association, 51, 273–282.

    CAS  Google Scholar 

  • Xu, J., & Zhu, Y. (1994). Some characteristics of ozone concentrations and their relations with meteorological factors in Shanghai. Atmospheric Environment, 20, 3387–3392.

    Article  Google Scholar 

  • Zhang, R., Lei, W., Tie, X., & Hess, P. (2004). Industrial emissions cause extreme diurnal urban ozone variability. Proceedings of National Academic Science USA, 101, 6346–6350.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Khoder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoder, M.I. Diurnal, seasonal and weekdays–weekends variations of ground level ozone concentrations in an urban area in greater Cairo. Environ Monit Assess 149, 349–362 (2009). https://doi.org/10.1007/s10661-008-0208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0208-7

Keywords

Navigation