Skip to main content
Log in

Point Singularities in Incompatible Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The equations of stress equilibrium and strain compatibility/incompatibility are discussed for fields with point singularities in a planar domain. The sufficiency (or insufficiency) of the smooth maps, obtained by restricting the singular fields to the domain away from the singularities, in completely characterizing the equations of equilibrium and compatibility/incompatibility over the entire domain, is established and illustrated with examples. The uniqueness of the solution to the stress problem of incompatible linear elasticity, allowing for singular fields, is proved. The uniqueness fails when the problem is considered solely in terms of the restricted maps. As further applications of our framework, a general stress solution, in response to point supported body force and defect fields, is derived and a generalized notion of the force acting on a defect is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 244, 87–112 (1951)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Eshelby, J.D.: The continuum theory of lattice defects. Solid State Phys. 3, 79–144 (1956)

    Article  Google Scholar 

  4. Friedlander, F.G., Joshi, M.S.: Introduction to the Theory of Distributions. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  5. Van Goethem, N., Dupret, F.: A distributional approach to the geometry of 2D dislocations at the continuum scale. Ann. Univ. Ferrara 58, 407–434 (2012)

    Article  MathSciNet  Google Scholar 

  6. Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C. (ed.) Mechanics of Solids, Volume II, pp. 1–295. Springer, Berlin (1984)

    Google Scholar 

  7. Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York (1999)

    Google Scholar 

  8. Kroupa, F.: Dislocation dipoles and dislocation loops. J. Phys., Colloq. 27(C3), 154–167 (1966)

    Article  Google Scholar 

  9. Kunin, I.A.: Elastic Media with Microstructure II: Two-Dimensional Models. Springer, Berlin (1983)

    Book  Google Scholar 

  10. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  11. Mardare, S.: On Poincaré and de Rham’s theorems. Rev. Roum. Math. Pures Appl. 53, 523–541 (2008)

    MATH  Google Scholar 

  12. Pandey, A., Gupta, A.: Topological defects and metric anomalies as sources of incompatibility for piecewise smooth strain fields. J. Elast. 139, 237–267 (2020)

    Article  MathSciNet  Google Scholar 

  13. Podio-Guidugli, P.: On concentrated contact interactions. In: dal Maso, G., DeSimone, A., Tomarelli, F. (eds.) Variational Problems in Materials Science, pp. 137–147. Birkhäuser, Basel (2006)

    Chapter  Google Scholar 

  14. Podio-Guidugli, P., Favata, A.: Elasticity for Geotechnicians. Springer, Switzerland (2014)

    Book  Google Scholar 

  15. Scala, R., Van Goethem, N.: Currents and dislocations at the continuum scale. Methods Appl. Anal. 23, 1–34 (2016)

    Article  MathSciNet  Google Scholar 

  16. Šilhavý, M.: The existence of the flux vector and the divergence theorem for general Cauchy fluxes. Arch. Ration. Mech. Anal. 90, 195–212 (1985)

    Article  MathSciNet  Google Scholar 

  17. Šilhavý, M.: Cauchy’s stress theorem for stresses represented by measures. Contin. Mech. Thermodyn. 20, 75–96 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. Simha, N.K., Bhattacharya, K.: Kinetics of phase boundaries with edges and junctions. J. Mech. Phys. Solids 46, 2323–2359 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. Sternberg, E., Eubanks, R.A.: On the concept of concentrated loads and an extension of the uniqueness theorem in the linear theory of elasticity. J. Ration. Mech. Anal. 4, 135–168 (1955)

    MathSciNet  MATH  Google Scholar 

  20. Turteltaub, M.J., Sternberg, E.: On concentrated loads and Green’s functions in elastostatics. Arch. Ration. Mech. Anal. 29, 193–240 (1968)

    Article  MathSciNet  Google Scholar 

  21. De Wit, R.: A view of the relation between the continuum theory of lattice defects and non-Euclidean geometry in the linear approximation. Int. J. Eng. Sci. 19, 1475–1506 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

AG acknowledges the financial support from SERB (DST) Grant No. CRG/2018/002873 titled “Micromechanics of Defects in Thin Elastic Structures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Gupta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of the Existence of Extension in Lemma 2.3

Appendix A: Proof of the Existence of Extension in Lemma 2.3

We first establish the existence result when \(\operatorname{deg}(T_{0})<0\). Consider \(\vartheta \in \mathcal{D}(\Omega )\) such that \(\operatorname{supp}(\vartheta ) \subset {B}_{r}\) and \(\vartheta (\boldsymbol{x}) =1\) for all \(\boldsymbol{x} \in {B}_{r/2}\). Given \(\lambda >1\), define \(\vartheta _{\lambda } \in \mathcal{D}(\Omega )\) as \(\vartheta _{\lambda } (\boldsymbol{x})=\vartheta (\lambda \boldsymbol{x})\). Hence, \(\operatorname{supp}(\vartheta _{\lambda }) \subset B_{r/\lambda }\) and \(\vartheta _{\lambda }(\boldsymbol{x}) =1\) for all \(\boldsymbol{x} \in {B}_{{r}/{2\lambda }}\). For any \(\phi \in \mathcal{D}(\Omega )\), \((1- \vartheta _{2^{j}})\phi \in \mathcal{D}(\Omega -O)\). We consider the sequence of distributions \({T}^{j}\in \mathcal{D}'(\Omega )\) as \({T}^{j}= (1- \vartheta _{2^{j}}){T_{0}}\). Hence, \(T^{j} (\phi )={T_{0}}((1- \vartheta _{2^{j}})\phi )\) for all \(\phi \in \mathcal{D}(\Omega )\). For any \(\phi \in \mathcal{D}(\Omega )\), we have \((T^{j+1}-T^{j}) (\phi )=(\phi T_{0})(-\vartheta _{2^{j+1}}+ \vartheta _{2^{j}}) = 2^{-nj} \left ((\phi T_{0})|_{{B}_{r}} \right )_{2^{-j}} (\vartheta -\vartheta _{2})\). Given \(\operatorname{deg}(T_{0})<0\), for \(k \in \mathbb{R}\) such that \(\operatorname{sd}(T_{0})< k <n\), we can conclude that

$$ \lim _{j\to \infty } 2^{-nj} \left ((\phi T_{0})|_{\mathcal{B}_{r}} \right )_{2^{-j}} (\vartheta -\vartheta _{2})=0. $$
(53)

Also, there exists \(j_{0}\in \mathbb{N}\) and \(c_{0}\in \mathbb{R}\) such that, for any \(j>j_{0}\), \((T^{j+1}-T^{j}) (\phi ) < c_{0} 2^{j(k-n)}\). Hence the sequence \(T^{j} (\phi )\) is a Cauchy sequence and we can define a distribution \(T\in \mathcal{D}'(\Omega )\) as \(T(\phi )=\lim _{j\to \infty } T^{j} (\phi )\). Clearly, \(T\in \mathcal{D}'(\Omega )\) such that \(T|_{\Omega -O}=T_{0}\). It can be shown that \(\operatorname{deg}(T)=\operatorname{deg}(T_{0})\) [1]. Further, if \(T_{1} \in \mathcal{D}'(\Omega )\) is another extension of \(T_{0}\) then \((T_{1}-T) \in \mathcal{E}(\Omega )\). Consequently \(\operatorname{deg}(T_{1})\geq 0\) if \((T_{1}-T)\neq 0\) (Lemma 2.4). This is a contradiction. Hence \(T\) is the unique extension of \(T_{0}\) such that \(\operatorname{deg}(T)=\operatorname{deg}(T_{0})\). Next, we consider the case when \(\operatorname{deg}(T_{0}) \geq 0\). Let \(\rho \) be the greatest integer smaller (or equal) than \(\operatorname{deg}(T_{0})\) and let \(x^{\alpha }={x_{1}}^{\alpha _{1}}{x_{2}}^{\alpha _{2}}\dots {x_{n}}^{ \alpha _{n}}\) for any \(\alpha =(\alpha _{1},\alpha _{2}\dots \alpha _{n})\). The function \(\phi \in \mathcal{D}(\Omega )\) can be uniquely decomposed as

$$ \phi =\sum _{|\alpha | \leq \rho } w^{\alpha } \partial ^{\alpha } \phi (O)+ \sum _{|\alpha |=\rho +1} x^{\alpha } \psi _{\alpha } $$
(54)

where \(\psi _{\alpha } \in \mathcal{D}(\Omega )\) and \(w^{\alpha }\in \mathcal{D}(\Omega )\) is as introduced in Lemma 2.4. We have \(\operatorname{deg}(x^{\alpha }T_{0}) <0\) for \(|\alpha |=\rho +1\) [1]. Let \(x^{\alpha }T \in \mathcal{D}'(\Omega )\) be the unique extension of \(x^{\alpha }T_{0} \in \mathcal{D}'(\Omega -O)\) such that \(\operatorname{deg}(x^{\alpha }T)=\operatorname{deg}(x^{\alpha }T_{0})\). The distribution \(T \in \mathcal{D}'(\Omega )\), defined as \(T(\phi )=\sum _{|\alpha |=\rho +1} x^{\alpha }T(\psi _{\alpha })\) satisfies \(T|_{\Omega -O}=T_{0}\). It can be shown that \(\operatorname{deg}(T)=\operatorname{deg}(T_{0})\) [1]. Let \(T_{1} \in \mathcal{D}'(\Omega )\) be an extension of \(T_{0}\) such that \(\operatorname{deg}(T_{1})=\operatorname{deg}(T_{0})\). Then \((T_{1}-T) \in \mathcal{E}(\Omega )\) with \(\operatorname{deg}(T_{1}-T)\leq \operatorname{deg}(T_{0})\), and we can write \(T_{1}-T=\Sigma _{|\alpha | \leq \operatorname{deg}({T_{0}})} q^{ \alpha } \partial ^{\alpha }\delta _{O}\), where \(q^{\alpha }\in \mathbb{R}\) (Lemma 2.4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Gupta, A. Point Singularities in Incompatible Elasticity. J Elast 147, 229–256 (2021). https://doi.org/10.1007/s10659-021-09874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09874-0

Keywords

Mathematics Subject Classification

Navigation