Skip to main content
Log in

Topological Defects and Metric Anomalies as Sources of Incompatibility for Piecewise Smooth Strain Fields

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The incompatibility of linearized piecewise smooth strain field, arising out of volumetric and surface densities of topological defects and metric anomalies, is investigated. First, general forms of compatibility equations are derived for a piecewise smooth strain field, defined over a simply connected domain, with either a perfectly bonded or an imperfectly bonded interface. Several special cases are considered and discussed in the context of existing results in the literature. Next, defects, representing dislocations and disclinations, and metric anomalies, representing extra matter, interstitials, thermal, and growth strains, etc., are introduced in a unified framework which allows for incorporation of their bulk and surface densities, as well as for surface densities of defect dipoles. Finally, strain incompatibility relations are derived both on the singular interface, and away from it, with sources in terms of defect and metric anomaly densities. With appropriate choice of constitutive equations, the incompatibility relations can be used to determine the state of internal stress within a body in response to the given prescription of defects and metric anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. A sequence of smooth functions \(\phi _{m} \in \mathcal{D}(\varOmega )\) converges to 0 if \(\phi _{m}\), for all \(m\), are supported in a fixed compact support and \(\phi _{m}\) and its derivatives to every order converge uniformly to 0. A functional \(T\) is continuous if, for any sequence of smooth functions \(\phi _{m} \in \mathcal{D}(\varOmega )\) converging to 0, \(T(\phi _{m})\) converges to 0.

  2. Any locally integrable function \(f\) can be associated with a distribution \(T_{f} \in \mathcal{D}'(\varOmega )\) such that, for all \(\phi \in \mathcal{D}(\varOmega )\),

    $$ T_{f} (\phi )= \int _{\varOmega } f \phi dv. $$
    (6)

    For a differentiable function \(f \in C^{1} (\varOmega )\),

    $$ {\partial _{i} T_{f}} (\phi )=- \int _{\varOmega } f \frac{ \partial \phi }{\partial x_{i}} dv = \int _{\varOmega } \frac{\partial f}{ \partial x_{i}} \phi dv. $$
    (7)

    Hence, \({\partial _{i} T_{f}} = T_{\frac{\partial f}{\partial x_{i}}}\). The definition of partial derivative for distributions therefore generalises the notion of partial derivative for differentiable functions.

  3. Given a distribution \(T(\phi )=\int _{\varOmega }b\phi dv + \int _{S} c \phi da\) such that \(b\) is piecewise smooth in \(\varOmega \) (smooth in \(\varOmega -S\)) and \(c\) is a smooth function on \(S\). Let \(T(\phi )=0\) for any \(\phi \in \mathcal{D}(\varOmega )\). At \(x_{0} \in \varOmega -S\), if \(b(x_{0})=b_{0} > 0\), there exists a connected set \(A\subset \varOmega -S\) with non-zero volume such that \(b \neq 0\) in \(A\). There also exists a connected set \(A_{1}\subset A\) such that \(A_{1}\) has a finite volume \(V_{1}\) with \(x_{0}\in A_{1}\) and \(b(x) > {b_{0}}/{2}\) for \(x\in A_{1}\). We choose \(\phi \in \mathcal{D}(\varOmega )\) such that \(\phi (x)=1\) for \(x\in A_{1}\), \(\phi (x)\geq 0\) for \(x\in A\), and \(\phi (x)=0\) for \(x \notin A\). Then \(T(\phi )\geq {b_{0} V_{1}}/{2}\) (\(b\) and \(\phi \) do not change signs) which gives us a contradiction. So \(b=0\) for all \(x\in \varOmega -S\). The assumed sign of \(b_{0}\) is clearly of no consequence. A similar argument can be constructed to argue that \(c=0\).

References

  1. Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslov. Math. J. 44, 109–140 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Amrouche, C., Ciarlet, P.G., Gratie, L., Kesavan, S.: On the characterizations of matrix fields as linearized strain tensor fields. J. Math. Pures Appl. 86, 116–132 (2006)

    Article  MathSciNet  Google Scholar 

  3. Amstutzl, S., Van Goethem, N.: Analysis of the incompatibility operator and application in intrinsic elasticity with dislocations. SIAM J. Math. Anal. 48, 320–348 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bilby, B.A.: Types of dislocation source. In: Report of Bristol Conference on Defects in Crystalline Solids, Bristol, 1984, pp. 124–133. The Physical Society, London (1955)

    Google Scholar 

  5. Brown, C.B., Goodman, L.E.: Gravitational stresses in accreted bodies. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 276, 571–576 (1963)

    ADS  MATH  Google Scholar 

  6. Ciarlet, P.G., Mardare, C.: Intrinsic formulation of the displacement-traction problem in linearized elasticity. Math. Models Methods Appl. Sci. 24, 1197–1216 (2014)

    Article  MathSciNet  Google Scholar 

  7. de Rham, G.: Differentiable Manifolds: Forms, Currents, Harmonic forms. Springer, Berlin (1984)

    Book  Google Scholar 

  8. de Wit, R.: A view of the relation between the continuum theory of lattice defects and non-Euclidean geometry in the linear approximation. Int. J. Eng. Sci. 19, 1475–1506 (1981)

    Article  MathSciNet  Google Scholar 

  9. Demailly, J-P.: Complex Analytic and Differential Geometry. Universite de Grenoble, Grenoble (2007)

    Google Scholar 

  10. do Carmo, M.P.: Differential Forms and Applications. Springer, Berlin (1994)

    Book  Google Scholar 

  11. Epstein, M., Segev, R.: Geometric theory of smooth and singular defects. Int. J. Non-Linear Mech. 66, 105–110 (2014)

    Article  ADS  Google Scholar 

  12. Gupta, A., Steigmann, D.J.: Chapters on kinematics and balance laws. In: Continuum Mechanics: Encyclopaedia of Life Support Systems (EOLSS). EOLSS Publishers, Oxford (2012)

    Google Scholar 

  13. Kesavan, S.: Topics in Functional Analysis and Applications. Wiley, New York (1989)

    MATH  Google Scholar 

  14. Kröner, E. (ed.): Mechanics of Generalized Continua. Springer, Berlin (1968)

    MATH  Google Scholar 

  15. Kröner, E.: Continuum theory of defects. In: Balian, R., et al. (eds.) Les Houches, Session XXXV, 1980 – Physique des défauts, pp. 215–315. North-Holland, New York (1981)

    Google Scholar 

  16. Maggiani, G.B., Scala, R., Van Goethem, N.: A compatible-incompatible decomposition of symmetric tensors in \({L}^{p}\) with application to elasticity. Math. Methods Appl. Sci. 38, 5217–5230 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mardare, S.: On Poincaré and de Rham’s theorems. Rev. Roum. Math. Pures Appl. 53, 523–541 (2008)

    MATH  Google Scholar 

  18. Markenscoff, X.: A note on strain jump conditions and Cesàro integrals for bonded and slipping inclusions. J. Elast. 45, 45–51 (1996)

    Article  Google Scholar 

  19. Roychowdhury, A., Gupta, A.: Non-metric connection and metric anomalies in materially uniform elastic solids. J. Elast. 126, 1–26 (2017)

    Article  MathSciNet  Google Scholar 

  20. Roychowdhury, A., Gupta, A.: On structured surfaces with defects: geometry, strain incompatibility, stress field, and natural shapes. J. Elast. 131, 239–276 (2018)

    Article  MathSciNet  Google Scholar 

  21. Scala, R., Van Goethem, N.: Currents and dislocations at the continuum scale. Methods Appl. Anal. 23, 1–34 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Scala, R., Van Goethem, N.: A variational approach to single crystals with dislocations. SIAM J. Math. Anal. 51, 489–531 (2019)

    Article  MathSciNet  Google Scholar 

  23. Van Goethem, N.: Incompatibility-governed singularities in linear elasticity with dislocations. Math. Mech. Solids 22, 1688–1695 (2017)

    Article  MathSciNet  Google Scholar 

  24. Wheeler, L., Luo, C.: On conditions at an interface between two materials in three-dimensional space. Math. Mech. Solids 4, 183–200 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Gupta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Identities in Section 2.5

1.1 A.1 Proof of Identities 2.1

  1. (a)

    For \(B \in \mathcal{B}(\varOmega )\) and \(\boldsymbol{\psi } \in \mathcal{D}(\varOmega ,\mathbb{R}^{3})\), \(\nabla B (\boldsymbol{\psi })= - B(\operatorname{div}\boldsymbol{\psi }) =\int _{\varOmega }\langle \nabla b , \boldsymbol{\psi }\rangle dx - \int _{S} \langle [\!\![b ]\!\!]\boldsymbol{n}, \boldsymbol{\psi } \rangle da\).

  2. (b)

    For \(C \in \mathcal{C}(\varOmega )\) and \(\boldsymbol{\psi } \in \mathcal{D}(\varOmega ,\mathbb{R}^{3})\), let \(\overline{c} \in C^{\infty }(\varOmega )\) be a smooth extension of \({c} \in C^{\infty }(S)\) so as to write \(\nabla C (\boldsymbol{\psi })= - C(\operatorname{div} \boldsymbol{\psi }) = -\int _{S} c (\operatorname{div} \boldsymbol{\psi }) da = -\int _{S} (\operatorname{div}(\overline{c} \boldsymbol{\psi }) - \langle \nabla \overline{c}, \boldsymbol{\psi } \rangle ) da\). Subsequently, use \(\operatorname{div}(\overline{c} \boldsymbol{\psi }) = \operatorname{div}_{S} (c\boldsymbol{\psi }) + \langle \nabla (\overline{c}\boldsymbol{\psi })\boldsymbol{n}, \boldsymbol{n} \rangle \), \(\langle \nabla \overline{c}, \boldsymbol{\psi } \rangle = \langle \nabla _{S} c,\boldsymbol{\psi } \rangle + \langle \nabla \overline{c} , \boldsymbol{n} \rangle \langle \boldsymbol{\psi },\boldsymbol{n} \rangle \) on \(S\), and the divergence theorem to get the desired result.

  3. (c)

    For \(F \in \mathcal{F}(\varOmega )\) and \(\boldsymbol{\psi } \in \mathcal{D}(\varOmega ,\mathbb{R}^{3})\), \(\nabla F (\boldsymbol{\psi })= - F(\operatorname{div}\boldsymbol{\psi }) = -\int _{S} f {\partial ( \operatorname{div}\boldsymbol{\psi })}/{\partial n} da\). But \({\partial (\operatorname{div}\boldsymbol{\psi })}/{\partial n} = \langle \nabla (\operatorname{div}\boldsymbol{\psi }) , \boldsymbol{n}\rangle =\langle \operatorname{div}_{S} (\nabla \boldsymbol{\psi })^{T},\boldsymbol{n}\rangle + \langle (\nabla ( \nabla \boldsymbol{\psi }) ) \boldsymbol{n}\otimes \boldsymbol{n}, \boldsymbol{n}\rangle \), on one hand, and \(\langle \operatorname{div} _{S} ( (\nabla \boldsymbol{\psi })^{T} ),\boldsymbol{n} \rangle =\operatorname{div}_{S} ({\partial \boldsymbol{\psi }}/{\partial n}) - \langle \nabla _{S} \boldsymbol{n}, \nabla \boldsymbol{\psi } \rangle \), on the other. Upon substitution, and using the chain rule for derivatives, we can obtain \(\nabla F (\boldsymbol{\psi }) =\)

    $$\begin{aligned} &- \int _{S} \biggl(\operatorname{div}_{S} \biggl(f \frac{\partial \boldsymbol{\psi }}{\partial n} \biggr)- \biggl\langle \nabla _{S} f, \frac{\partial \boldsymbol{\psi }}{\partial n} \biggr\rangle - \operatorname{div}_{S}\bigl(f( \nabla _{S} \boldsymbol{n}) \boldsymbol{\psi }\bigr)+ \bigl\langle \operatorname{div}_{S} (f\nabla _{S} \boldsymbol{n}), \boldsymbol{\psi } \bigr\rangle \\ &\quad{}+ \bigl\langle \bigl(\nabla (\nabla \boldsymbol{ \psi })\bigr) \boldsymbol{n}\otimes \boldsymbol{n}, \boldsymbol{n}\bigr\rangle \biggr) da, \end{aligned}$$

    which immediately yields the result.

  4. (d)

    For \(H \in \mathcal{H}(\varOmega )\) and \(\boldsymbol{\psi } \in \mathcal{D}(\varOmega ,\mathbb{R}^{3})\), we have \(\nabla H ( \boldsymbol{\psi }) = - H(\operatorname{div}\boldsymbol{\psi }) = -\int _{L} h (\operatorname{div}\boldsymbol{\psi }) dl = -\int _{L} (h \langle \nabla \boldsymbol{\psi },(\boldsymbol{I}-\boldsymbol{t} \otimes \boldsymbol{t})\rangle + \langle h \boldsymbol{t}, {\partial \boldsymbol{\psi }}/{\partial t}\rangle ) dl\), leading to the desired identity.

1.2 A.2 Proof of Identities 2.2

  1. (a)

    For \(\boldsymbol{B} \in \mathcal{B}(\varOmega ,\mathbb{R}^{3})\) and \({\psi } \in \mathcal{D}(\varOmega )\), \(\operatorname{Div}\boldsymbol{B} ({\psi })=-\boldsymbol{B}(\nabla {\psi }) = -\int _{\varOmega }\langle \boldsymbol{b},\nabla {\psi } \rangle dv\), which on using the divergence theorem yields the result.

  2. (b)

    For \(\boldsymbol{C} \in \mathcal{C}(\varOmega ,\mathbb{R}^{3})\) and \({\psi } \in \mathcal{D}(\varOmega )\), \(\operatorname{Div}\boldsymbol{C} ({\psi })=-\boldsymbol{C}(\nabla {\psi })=- \int _{S} \langle \boldsymbol{c}, \nabla {\psi } \rangle da = -\int _{S} \operatorname{div}_{S} (\boldsymbol{c} {\psi }) da + \int _{S} ( \operatorname{div}_{S} \boldsymbol{c} ){\psi } da - \int _{S} \langle \boldsymbol{c}, \boldsymbol{n} \rangle ({\partial {\psi}}/{\partial {n}}) da\). The desired identity follows upon using the divergence theorem.

  3. (c)

    For \(\boldsymbol{F} \in \mathcal{F}(\varOmega ,\mathbb{R}^{3})\) and \({\psi } \in \mathcal{D}(\varOmega )\), \(\operatorname{Div}\boldsymbol{F}( {\psi }) = -\boldsymbol{F}(\nabla {\psi }) = -\int _{S} \langle \boldsymbol{f},\nabla (\nabla {\psi }) \boldsymbol{n} \rangle da\). Using \(\nabla (\nabla {\psi }) \boldsymbol{n} = (\boldsymbol{I}- \boldsymbol{n}\otimes \boldsymbol{n})(\nabla (\nabla {\psi }) \boldsymbol{n}) +(\boldsymbol{n}\otimes \boldsymbol{n})(\nabla ( \nabla {\psi }) \boldsymbol{n})\) and \((\boldsymbol{I}-\boldsymbol{n} \otimes \boldsymbol{n})(\nabla (\nabla {\psi }) \boldsymbol{n}) = \nabla _{S} ({\partial \varPsi }/{\partial n}) - \nabla _{S} \boldsymbol{n} \nabla {\psi }\) we get

    $$ \operatorname{Div}\boldsymbol{F}({\psi }) = - \int _{S} \biggl\langle \boldsymbol{f}, \biggl(\nabla _{S} \biggl(\frac{\partial \psi }{\partial n} \biggr) - \nabla _{S} \boldsymbol{n}\nabla {\psi } \biggr) \biggr\rangle da - \int _{S} \langle \boldsymbol{f},\boldsymbol{n} \rangle \bigl\langle \nabla (\nabla {\psi }), \boldsymbol{n} \otimes \boldsymbol{n} \bigr\rangle da, $$

    which after some manipulation produces the required identity.

  4. (d)

    For \(\boldsymbol{H} \in \mathcal{H}(\varOmega ,\mathbb{R}^{3})\) and \({\psi } \in \mathcal{D}(\varOmega )\), we have \(\operatorname{Div} \boldsymbol{H} ({\psi }) = -\boldsymbol{H}(\nabla {\psi }) = -\int _{L} \langle \boldsymbol{h},\nabla {\psi } \rangle dl = - \int _{L} \langle \boldsymbol{h},(\boldsymbol{I}-\boldsymbol{t} \otimes \boldsymbol{t}) \nabla {\psi } \rangle dl -\int _{L} \langle \boldsymbol{h},({\partial {\psi }}/{\partial t})\boldsymbol{t} \rangle dl\). The final identity is immediate.

1.3 A.3 Proof of Identities 2.3

  1. (a)

    For \(\boldsymbol{B} \in \mathcal{B}(\varOmega ,\mathbb{R}^{3})\) and \(\boldsymbol{\phi } \in \mathcal{D}(\varOmega ,\mathbb{R}^{3})\), \(\operatorname{Curl}\boldsymbol{B} (\boldsymbol{\phi })= \boldsymbol{B} (\operatorname{curl}\boldsymbol{\phi })= \int _{\varOmega } \langle \boldsymbol{b},\operatorname{curl}\boldsymbol{\phi } \rangle dv = \int _{\varOmega } (\operatorname{div}(\boldsymbol{\phi }\times \boldsymbol{b})+\langle \operatorname{curl}\boldsymbol{b}, \boldsymbol{\phi } \rangle ) dv\). The result follows after using the divergence theorem.

  2. (b)

    For \(\boldsymbol{C} \in \mathcal{C}(\varOmega ,\mathbb{R}^{3})\) and \(\boldsymbol{\phi } \in \mathcal{D}(\varOmega ,\mathbb{R}^{3})\), we have \(\operatorname{Curl}\boldsymbol{C} (\boldsymbol{\phi })= \boldsymbol{C} (\operatorname{curl}\boldsymbol{\phi })= \int _{S} \langle \boldsymbol{c},\operatorname{curl}\boldsymbol{\phi } \rangle da = \int _{S} \langle \boldsymbol{c},\operatorname{curl}_{S} \boldsymbol{\phi }-({\partial \boldsymbol{\phi }}/{\partial n}) \times \boldsymbol{n} \rangle da\). Recall the identity \(\operatorname{div}_{S} (\boldsymbol{u}\times \boldsymbol{v})=\langle \operatorname{curl}_{S} \boldsymbol{u},\boldsymbol{v}\rangle -\langle \boldsymbol{u},\operatorname{curl}_{S} \boldsymbol{v} \rangle \), for \(\boldsymbol{u},\boldsymbol{v} \in C^{\infty }(S,\mathbb{R}^{3})\), to get

    $$ \operatorname{Curl}\boldsymbol{C} (\boldsymbol{\phi })= \int _{S} \operatorname{div}_{S} (\boldsymbol{ \phi }\times \boldsymbol{c}) da + \int _{S} \langle \boldsymbol{\phi },\operatorname{curl}_{S} \boldsymbol{c}\rangle da- \int _{S} \biggl\langle \boldsymbol{c} , \frac{ \partial \boldsymbol{\phi }}{\partial n} \times \boldsymbol{n} \biggr\rangle da, $$

    which immediately lead to the pertinent identity.

  3. (c)

    For \(\boldsymbol{F} \in \mathcal{F}(\varOmega ,\mathbb{R}^{3})\) and \(\boldsymbol{\phi } \in \mathcal{D}(\varOmega ,\mathbb{R}^{3})\), \(\operatorname{Curl}\boldsymbol{F} (\boldsymbol{\phi }) = \boldsymbol{F}(\operatorname{curl}\boldsymbol{\phi } ) = \int _{S} \langle \boldsymbol{f},{\partial (\operatorname{curl} \boldsymbol{\phi })}/{\partial n} \rangle da\). Use the skew part of the identity \(\nabla _{S} ({\partial \boldsymbol{\phi }}/{\partial n})= \nabla (\nabla \boldsymbol{\phi })\boldsymbol{n}-(\nabla (\nabla \boldsymbol{\phi })\boldsymbol{n}\otimes \boldsymbol{n})\otimes \boldsymbol{n} +\nabla \boldsymbol{\phi }\nabla _{S} \boldsymbol{n}\) to obtain \(\operatorname{curl}_{S}({\partial \boldsymbol{\phi }}/{\partial n})={\partial (\operatorname{curl}\boldsymbol{\phi })}/{\partial n}+( \nabla (\nabla \boldsymbol{\phi })\boldsymbol{n}\otimes \boldsymbol{n})\times \boldsymbol{n} + ax(\nabla \boldsymbol{\phi } \nabla _{S} \boldsymbol{n}-(\nabla \boldsymbol{\phi }\nabla _{S} \boldsymbol{n})^{T})\). Furthermore, we note that

    $$\begin{aligned} \int _{S} \biggl\langle \boldsymbol{f}, \operatorname{curl}_{S} \biggl(\frac{\partial \boldsymbol{\phi }}{\partial n} \biggr) \biggr\rangle da =& \int _{S} \biggl\langle -\kappa (\boldsymbol{f}\times \boldsymbol{n} ) +\operatorname{curl}_{S} (\boldsymbol{f} ), \frac{ \partial \boldsymbol{\phi }}{\partial n} \biggr\rangle da \\ &{}+ \int _{\partial S - \partial \varOmega } \biggl\langle ( \boldsymbol{f}\times \boldsymbol{ \nu } ), \frac{\partial \boldsymbol{\phi }}{\partial n} \biggr\rangle dl, \\ \int _{S} \bigl\langle \boldsymbol{f}, \bigl(\nabla (\nabla \boldsymbol{\phi })\boldsymbol{n}\otimes \boldsymbol{n} \bigr)\times \boldsymbol{n} \bigr\rangle da =&- \int _{S} \bigl\langle \boldsymbol{f}\times \boldsymbol{n}, \bigl(\nabla (\nabla \boldsymbol{\phi }) \boldsymbol{n}\otimes \boldsymbol{n} \bigr) \bigr\rangle da, \end{aligned}$$

    and \(\langle \boldsymbol{f} ,ax(\nabla \boldsymbol{\phi }\nabla _{S} \boldsymbol{n}-(\nabla \boldsymbol{\phi }\nabla _{S} \boldsymbol{n})^{T}) \rangle = \langle \tilde{\boldsymbol{f}},\nabla \boldsymbol{\phi } \nabla _{S} \boldsymbol{n} \rangle = -\langle (\nabla _{S} \boldsymbol{n} \times \boldsymbol{f})^{T},\nabla _{S} \boldsymbol{\phi } \rangle = \langle \operatorname{div}_{S} (\nabla _{S} \boldsymbol{n} \times \boldsymbol{f})^{T},\boldsymbol{\phi } \rangle - \operatorname{div}_{S} ((\nabla _{S} \boldsymbol{n} \times \boldsymbol{f}) \boldsymbol{\phi })\), where \(\tilde{\boldsymbol{f}}\) is the skew symmetric tensor whose axial vector is \(\boldsymbol{f}\). Consequently, \(\int _{S} \langle \boldsymbol{f} ,ax(\nabla \boldsymbol{\phi }\nabla _{S} \boldsymbol{n}-(\nabla \boldsymbol{\phi }\nabla _{S} \boldsymbol{n})^{T}) \rangle da =\)

    $$ \int _{S} \bigl\langle \operatorname{div}_{S} ( \nabla _{S} \boldsymbol{n} \times \boldsymbol{f} )^{T}, \boldsymbol{\phi } \bigr\rangle da - \int _{\partial S - \partial \varOmega } \bigl\langle ( \nabla _{S} \boldsymbol{n} \times \boldsymbol{f})\boldsymbol{\phi }, \boldsymbol{\nu } \bigr\rangle dl + \int _{S} \kappa \bigl\langle ( \nabla _{S} \boldsymbol{n}\times \boldsymbol{f})\boldsymbol{\phi }, \boldsymbol{n} \bigr\rangle da. $$

    The desired identity follows upon combining the above results.

  4. (d)

    For \(\boldsymbol{H} \in \mathcal{H}(\varOmega ,\mathbb{R}^{3})\) and \(\boldsymbol{\phi } \in \mathcal{D}(\varOmega ,\mathbb{R}^{3})\), \(\operatorname{Curl}\boldsymbol{H} (\boldsymbol{\phi })= \boldsymbol{H}(\operatorname{curl}\boldsymbol{\phi })= \int _{L} \langle \boldsymbol{h} , \operatorname{curl}\boldsymbol{\phi }) \rangle dl= \int _{L} \langle \boldsymbol{h} , \operatorname{curl}_{t} \boldsymbol{\phi } \rangle dl -\int _{L} \langle \boldsymbol{h} , ( {\partial \boldsymbol{\phi }}/{\partial t} \times \boldsymbol{t}) \rangle dl\). The required result is imminent.

Appendix B: A Lemma for Theorem 2.2

A distribution \(T\in \mathcal{D}'(\varOmega )\) is said to be of order \(m\) if, for any compact set \(K \subset \varOmega \), there exists a finite \(M \in \mathbb{R}\) such that, for any smooth function \(\phi \) supported in \(K\), \(|T(\phi )| \leq M \varSigma _{|\alpha | \leq m} |\text{sup} ( \partial ^{\alpha }\phi )|\), where \(\partial ^{\alpha }\) denotes the \(\alpha \) order derivative of \(\phi \). In particular, \(T\) is of order 0 if \(|T(\phi )| \leq M |\text{sup} (\phi )|\).

Lemma B.1

For a\(\boldsymbol{T} \in \mathcal{D}'(\varOmega ,\mathbb{R}^{3})\), which satisfies\(\operatorname{Div}\boldsymbol{T}=0\), there exists\(\boldsymbol{u} \in C^{\infty } (\varOmega , \mathbb{R}^{3})\)and\(\boldsymbol{S} \in \mathcal{D}'(\varOmega ,\mathbb{R}^{3})\)such that

$$ \boldsymbol{T_{u}} - \boldsymbol{T} = \operatorname{Curl} \boldsymbol{S}, $$
(114)

where\(\boldsymbol{T_{u}} \in \mathcal{D}'(\varOmega ,\mathbb{R}^{3})\)is given by\(\boldsymbol{T_{u}} (\boldsymbol{\phi })=\int _{\varOmega } \langle \boldsymbol{u}, \boldsymbol{\phi } \rangle dv\)for all\(\boldsymbol{\phi } \in \mathcal{D}(\varOmega ,\mathbb{R}^{3})\).

Proof

Consider a map \(H^{y} : [0,1]\times \mathbb{R}^{3} \to \mathbb{R}^{3}\) given by \(H^{y} (t,x)=x + t \psi (x) y\), where \(\psi \) is a smooth scalar field over \(\mathbb{R}^{3}\) such that \(\psi (x) = 0\) for \({x} \notin \varOmega \) but \(0<\psi \leq 1\), \(|\nabla \psi | \leq 1\) whenever \(x \in \varOmega \), and \({y} \in \mathbb{R}^{3}\) is such that \(|{y}| <1\). It can be shown that, for any \(t \in [0,1]\), \(H^{y} : [0,1] \times \varOmega \to \varOmega \). For \(\boldsymbol{\phi } \in \mathcal{D}( \varOmega ,\mathbb{R}^{3})\), we introduce

$$ \boldsymbol{S}^{y} (\boldsymbol{\phi }) = \int _{0}^{1} \bigl\langle \boldsymbol{T} , \bigl(\boldsymbol{\phi } \bigl(H^{y}(t,{x})\bigr) \times y\bigr)\psi (x) \bigr\rangle dt. $$
(115)

To check that \(\boldsymbol{S}^{y} \in \mathcal{D}'(\varOmega ,\mathbb{R} ^{3})\) it is sufficient to note that \({S}^{y}_{i}\) defines a linear functional on \(\mathcal{D}(\varOmega )\) and that a sequence of smooth functions \(\phi _{m}\) converging to 0 implies the convergence of \((\boldsymbol{\phi } (H^{y}(t,x)) \times y)_{i}\psi (x)\), and consequently of \({S}^{y}_{i}(\phi _{m})\), to 0. Moreover, for \(\boldsymbol{\phi } \in \mathcal{D}(\varOmega ,\mathbb{R}^{3})\), \(\operatorname{Curl}\boldsymbol{S}^{y} (\boldsymbol{\phi }) = \boldsymbol{S}^{y} (\operatorname{curl}\boldsymbol{\phi })=\)

$$ \int _{0}^{1} \biggl\langle {T}_{i}, (\frac{\partial }{\partial t} \biggl( \phi _{i}\bigl(H^{y} (t,x)\bigr)+ \phi _{j} \bigl(H^{y} (t,x)\bigr) y_{j} t \frac{\partial \psi }{\partial x_{i}} \biggr) - \frac{\partial }{\partial x_{i}} \bigl( \phi _{j} \bigl(H^{y} (t,x) y_{j} \psi \bigr) \bigr) \biggr\rangle dt, $$

which, on using \(\operatorname{Div}\boldsymbol{T}=0\) and \(H^{y} (0,x)=x\), yields

$$ \operatorname{Curl}\boldsymbol{S}^{y} (\boldsymbol{\phi }) = \biggl\langle {T} _{i}, \biggl(\phi _{i}\bigl({x}+\psi ({x}) y \bigr)+ \phi _{j}\bigl({x}+\psi ({x}) y\bigr) y _{j} \frac{\partial \psi }{\partial x_{i}} \biggr) \biggr\rangle - \boldsymbol{T}(\boldsymbol{\phi }). $$
(116)

Let \(\rho \in C^{\infty }( \mathbb{R}^{3} )\) be a smooth function supported over a ball of unit radius, centred at the origin, such that it depends only on \(|\boldsymbol{x}|\) and satisfies \(\int _{\mathbb{R} ^{3}} \rho ({x}) dv =1\). Given \(\epsilon >0\), the function \(\rho _{\epsilon }= \epsilon ^{-3} \rho (x/{\epsilon })\) is supported in a ball of radius \(\epsilon \) such that \(\int _{\mathbb{R}^{3}} \rho _{\epsilon }({x}) dv =1\). For \(\boldsymbol{S} \in \mathcal{D}'( \varOmega ,\mathbb{R}^{3})\), defined as \(\boldsymbol{S}=\int _{B(0,\epsilon )} \boldsymbol{S}^{y} \rho _{\epsilon }(y) dv_{y}\), where \(B(0,\epsilon )\) is a ball of radius \(\epsilon \) centred at the origin, \(\operatorname{Curl}\boldsymbol{S}(\boldsymbol{\phi })= \int _{B(0,\epsilon )} \operatorname{Curl}\boldsymbol{S}^{y} ( \boldsymbol{\phi })\rho _{\epsilon }(y) dv_{y} =\)

$$ \int _{B(0,\epsilon )} \biggl( \biggl\langle {T}_{i}, \biggl(\phi _{i}\bigl({x}+\psi ( {x}) y\bigr)+ \phi _{j} \bigl({x}+\psi ({x}) y\bigr) y_{j} \frac{\partial \psi }{ \partial x_{i}}\biggr)\biggr\rangle \rho _{\epsilon }(y) \biggr) dv_{y} - \boldsymbol{T}( \boldsymbol{\phi }). $$

We can henceforth write \(\operatorname{Curl}\boldsymbol{S}= \boldsymbol{T}_{1}-\boldsymbol{T}\), where \(\boldsymbol{T}_{1} ( \boldsymbol{\phi })= \boldsymbol{T} (\boldsymbol{\phi }^{\epsilon })\),

$$ \phi ^{\epsilon }_{i}(x) = \int \rho _{\epsilon } \biggl(\frac{z-x}{ \psi (x)} \biggr) \frac{\phi _{i}(z)}{\psi (x)} dv_{z} + \int \biggl(\rho _{\epsilon } \biggl(\frac{z-x}{\psi (x)} \biggr) \frac{z_{j} - x_{j}}{ \psi (x)}\frac{\partial \psi }{\partial x_{i}} \biggr) \frac{\phi _{j}(z)}{ \psi (x)} dv_{z}, $$

and \(z = x+\psi (x) y\). Since \(\rho _{\epsilon }\) is smooth, its derivatives remain bounded and the supremum norm of \(\boldsymbol{\phi }^{\epsilon }\) and all the partial derivatives of \(\boldsymbol{\phi }^{\epsilon }\) are controlled by the supremum norm of \(|\boldsymbol{\phi }|\). Therefore, there exist a \(\boldsymbol{u} \in C^{\infty } (\varOmega , \mathbb{R}^{3})\) such that \(\boldsymbol{T} _{1}=\boldsymbol{T_{u}}\) leading us to our assertion. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Gupta, A. Topological Defects and Metric Anomalies as Sources of Incompatibility for Piecewise Smooth Strain Fields. J Elast 139, 237–267 (2020). https://doi.org/10.1007/s10659-019-09750-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-019-09750-y

Keywords

Mathematics Subject Classification (2010)

Navigation