Skip to main content
Log in

Cauchy’s stress theorem for stresses represented by measures

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A version of Cauchy’s stress theorem is given in which the stress describing the system of forces in a continuous body is represented by a tensor valued measure with weak divergence a vector valued measure. The system of forces is formalized in the notion of an unbounded Cauchy flux generalizing the bounded Cauchy flux by Gurtin and Martins (Arch Ration Mech Anal 60:305–324, 1976). The main result of the paper says that unbounded Cauchy fluxes are in one-to-one correspondence with tensor valued measures with weak divergence a vector valued measure. Unavoidably, the force transmitted by a surface generally cannot be defined for all surfaces but only for almost every translation of the surface. Also conditions are given guaranteeing that the transmitted force is represented by a measure. These results are proved by using a new homotopy formula for tensor valued measure with weak divergence a vector valued measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  2. Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135, 293–318 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ash, R.B.: Measure, Integration and Functional Analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  4. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999)

    MATH  Google Scholar 

  5. Capriz, G., Mazzini, G.: A σ-algebra and a concept of limit for bodies. Math. Models Methods Appl. Sci. 10, 801–813 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Chen, G.-Q., Frid, H.: On the theory of divergence-measure fields and its applications. Bol. Soc. Bras. Math. 32, 1–33 (2001)

    Article  MathSciNet  Google Scholar 

  7. Chen, G.-Q., Frid, H.: Extended divergence-measure fields and the Euler equations for gas dynamics. Commun. Math. Phys. 236, 251–280 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Degiovanni, M., Marzocchi, A., Musesti, A.: Cauchy fluxes associated with tensor fields having divergence measure. Arch. Ration. Mech. Anal. 147, 197–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Degiovanni, M., Marzocchi, A., Musesti, A.: Virtual powers on diffused subbodies and normal traces of tensor-valued measures, (2008, in press)

  10. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  11. Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York (2000)

    Google Scholar 

  12. Gurtin, M.E., Martins, L.C.: Cauchy’s theorem in classical physics. Arch. Ration. Mech. Anal. 60, 305–324 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurtin, M.E., Murdoch, I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lucchesi, M., Šilhavý, M., Zani, N.: A new class of equilibrated stress fields for no-tension bodies. J. Mech. Mater. Struct. 1, 503–539 (2006)

    Article  Google Scholar 

  15. Lucchesi, M., Šilhavý, M., Zani, N.: Integration of measures and admissible stress fields for masonry bodies. J. Mech. Mater. Struct. (2008, to appear)

  16. Marzocchi, A., Musesti, A.: Decomposition and integral representation of Cauchy interactions associated with measures. Contin. Mech. Thermodyn. 13, 149–169 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Marzocchi, A., Musesti, A.: On the measure theoretic foundation of the second law of thermodynamics. Math. Mod. Meth. Appl. S. 12, 721–736 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marzocchi, A., Musesti, A.: Balanced powers in continuum mechanics. Meccanica 38, 369–389 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marzocchi, A., Musesti, A.: The Cauchy stress theorem for bodies with finite perimeter. Rend. Sem. Mat. Univ. Padova 109, 1–11 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Marzocchi, A., Musesti, A.: Balance laws and weak boundary conditions in continuum mechanics. J. Elast. 38, 239–248 (2004)

    Article  MathSciNet  Google Scholar 

  21. Morrey, Ch.B. Jr : Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    MATH  Google Scholar 

  22. Noll, W.: The foundations of classical mechanics in the light of recent advances in continuum mechanics. In: Suppes, P.(eds) The Axiomatic Method, with Special Reference to Geometry and Physics, pp. 266–281. North-Holland, Amsterdam (1959)

    Google Scholar 

  23. Podio-Guidugli, P.: Examples of concentrated contact interactions in simple bodies. J. Elast. 75, 167–186 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Podio-Guidugli, P.: On concentrated contact interactions. In: Progress in Nonlinear Differential Equations and their Applications, vol. 68, pp. 137–147. Birkhäuser (2006)

  25. Rodnay, G., Segev, R.: Cauchy’s flux theorem in light of the geometric integration theory. J. Elast. 71 (2003), 183–203 (2002, preprint)

    Google Scholar 

  26. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  27. Schuricht, F.: A new mathematical foundation for contact interactions in continuum physics. Arch. Ration. Mech. Anal. 184, 495–551 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Šilhavý, M.: The existence of the flux vector and the divergence theorem for general Cauchy fluxes. Arch. Ration. Mech. Anal. 90, 195–212 (1985)

    Article  MATH  Google Scholar 

  29. Šilhavý, M.: Cauchy’s stress theorem and tensor fields with divergences in L p. Arch. Ration. Mech. Anal. 116, 223–255 (1991)

    Article  MATH  Google Scholar 

  30. Šilhavý, M.: Geometric integration theory and Cauchy’s stress theorem (2004) Multiplied notes from the Ravello Summer School in Mathematical Physics (2004)

  31. Šilhavý, M.: Divergence measure fields and Cauchy’s stress theorem. Rend. Sem. Mat. Padova 113, 15–45 (2005)

    MATH  Google Scholar 

  32. Šilhavý, M.: Normal traces of divergence measure vectorfields on fractal boundaries (2005) Dipartimento di Matematica, University of Pisa, October (2005, preprint)

  33. Šilhavý, M.: The divergence theorem for divergence measure vectorfields on sets with fractal boundaries. Math. Mech. Solids (2008, in press). doi:10.1177/1081286507081960

  34. Šilhavý, M.: Normal currents: structure, duality pairings and div–curl lemmas. Milan J. Math. doi:10.1007/s00032-007-0081-9

  35. Témam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  36. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  37. Ziemer, W.: Cauchy flux and sets of finite perimeter. Arch. Ration. Mech. Anal. 84, 189–201 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Šilhavý.

Additional information

Communicated by L. Evans

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šilhavý, M. Cauchy’s stress theorem for stresses represented by measures. Continuum Mech. Thermodyn. 20, 75–96 (2008). https://doi.org/10.1007/s00161-008-0073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-008-0073-1

Keywords

PACS

Navigation