Skip to main content

A Fast Fourier Transform-Based Approach for Generalized Disclination Mechanics Within a Couple Stress Theory

  • Chapter
  • First Online:
Generalized Continua as Models for Classical and Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 42))

Abstract

Recently, a small-distortion theory of coupled plasticity and phase transformation accounting for the kinematics and thermodynamics of generalized defects called generalized disclinations (abbreviated g-disclinations) has been proposed by Acharya and Fressengeas (2012, 2015). Then, a first numerical spectral approach has been developed to solve the elasto-static equations of field dislocation and g-disclination mechanics set out in this theory for periodic media and for linear elastic media using the classic Hooke’s law within a Cauchy stress theory (Berbenni et al. 2014). Here, given a spatial distribution of generalized disclination density tensors in a homogenous linear higher order elastic media, a couple stress theory with elastic incompatibilities of first and second orders is developed. The incompatible and compatible elastic second and first distortions are obtained from the solution of Poisson and Navier-type equations in the Fourier space. The efficient Fast Fourier Transform (FFT) algorithm is used based on intrinsic Discrete Fourier Transforms (DFT) that are well adapted to the discrete grid to compute higher order partial derivatives in the Fourier space. Therefore, stress and couple stress fields can be calculated using the inverse FFT. The numerical examples are given for straight wedge disclinations and associated wedge disclination dipoles which are of importance to geometrically describe tilt grain boundaries at fine scales in polycrystalline solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya A (2001) A model of crystal plasticity based on the theory of continuously distributed dislocations. J Mech Phys Solids 49:761–785

    Article  MATH  Google Scholar 

  • Acharya A, Fressengeas C (2012) Coupled phase transformations and plasticity as a field theory of deformation incompatibility. Int J Fract 174:87–94

    Article  Google Scholar 

  • Acharya A, Fressengeas C (2015) Continuum mechanics of the interaction of phase boundaries and dislocations in solids. In: Chen GQ, Grinfeld M, Knops RJ (eds) Proceedings in mathematics and statistics for workshop on differential geometry and continuum mechanics, vol 137, Springer, Edinburgh, pp 125–168

    Google Scholar 

  • Acharya A, Roy A (2006) Size effects and idealized dislocation microstructure at small scales: predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: Part I. J Mech Phys Solids 54:1687–1710

    Article  MathSciNet  MATH  Google Scholar 

  • Anthony KH (1970) Die Theorie der Disklinationen. Arch Rat Mech Anal 39:43–88

    Google Scholar 

  • Berbenni S, Taupin V, Djaka KS, Fressengeas C (2014) A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics. Int J Solids Struct. 51:4157–4175

    Article  Google Scholar 

  • Bilby BA, Bullough R, Smith E (1955) Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc Roy Soc Lond A 231:263–273

    Article  MathSciNet  Google Scholar 

  • Brenner R, Beaudoin AJ, Suquet P, Acharya A (2014) Numerical implementation of static field dislocation mechanics theory for periodic media. Philos Mag 94:1764–1787

    Article  Google Scholar 

  • deWit R (1970) Linear theory of static disclinations. In: Simmons JA, de Wit R, Bullough R (eds) Fundamental aspects of dislocation theory, NBS Spec Publ 317, vol 1, National Bureau of Standards, Washington, pp 651–680

    Google Scholar 

  • deWit R (1973) Theory of disclinations: IV. Straight disclinations. J Res Nat Bur Stand, Phys Chem 77A(5):607–658

    Google Scholar 

  • Dreyer W, Müller WH, Olschewski J (1999) An approximate analytical 2D-solution for the stresses and strains in eigenstrained cubic materials. Acta Mech 136(3–4):171–192

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (2002) Non local continuum field theories. Springer, New York

    MATH  Google Scholar 

  • Eyre DJ, Milton GW (1999) A fast numerical scheme for computing the response of composites using grid refinement. Eur Phys J Appl Phys 6:41–47

    Article  Google Scholar 

  • Forest S (2006) Milieux continus généralisés et matériaux hétérogènes. Presses de l’Ecole des Mines, Paris

    Google Scholar 

  • Fressengeas C, Taupin V, Capolungo L (2011) An elasto-plastic theory of dislocation and disclination fields. Int J Solids Struct 48:3499–3509

    Article  Google Scholar 

  • Fressengeas C, Taupin V, Capolungo L (2014) Continuous modeling of the structure of symmetric tilt boundaries. Int J Solids Struct 51(6):1434–1441

    Article  Google Scholar 

  • Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231

    Article  Google Scholar 

  • Gertsman VY, Nazarov AA, Romanov AE, Valiev RZ, Vladimirov VI (1989) Disclination-structural unit model of grain boundaries. Philos Mag A 59(5):1113–1118

    Article  Google Scholar 

  • Gourgiotis PA, Georgiadis HG (2008) An approach based on distributed dislocations and disclinations for crack problems in couple-stress theory. Int J Solids Struct 45:5521–5539

    Article  MATH  Google Scholar 

  • Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, New York

    Google Scholar 

  • Jiang B (1998) Theory and applications in computational fluid dynamics and electromagnetics. The least-squares finite element method. Scientific Computation, Springer, Berlin

    Chapter  Google Scholar 

  • Kassbohm S (2006) Fourierreihen zur Berechnung repräsentativer Volumenelemente mit Mikrostruktur. Ph.D. thesis, Fakultät V der TU Berlin, Germany

    Google Scholar 

  • Kassbohm S, Müller WH, Silber G, Fessler R (2006) Fourier series for continua with microstructure. PAMM—Proc Appl Math Mech 6:487–488

    Article  Google Scholar 

  • Koiter WT (1964) Couple stresses in the theory of elasticity, I and II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 67:17–44

    MathSciNet  MATH  Google Scholar 

  • Kosevich AM (1979) Crystal dislocations and the theory of elasticity (Chap 1). In: Nabarro FRN (ed) Dislocations in solids, vol 1. Amsterdam, North-Holland, pp 33–141

    Google Scholar 

  • Kröner E (1958) Kontinuumstheorie der Versetzungen und Eigenspannungen. In: Collatz L, Loesch F (eds) Ergebnisse der Angewewandte Mathematik 5. Springer, Berlin

    Google Scholar 

  • Kröner E (1963) On the physical reality of torque stresses in continuum mechanics. Int J Eng Sci 1:261–278

    Article  Google Scholar 

  • Kröner E (1968) Mechanics of generalized media. In: Kröner E (ed) Proceedings of the IUTAM symposium on the generalized cosserat continuum and the continuum theory of dislocations with applications. Springer, Berlin

    Google Scholar 

  • Kröner E (1981) Continuum theory of defects. In: Balian R et al. (eds) Physics of defects, Les Houches, Session 35. North Holland, New York, pp 215–315

    Google Scholar 

  • Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast fourier transform. Acta Mater 49:2723–2737

    Article  Google Scholar 

  • Li JCM (1972) Disclination model of high angle grain boundaries. Surf Sci 31:12–26

    Article  Google Scholar 

  • Lubarda VA (2003) The effects of couple stresses on dislocation strain energy. Int J Solids Struct 40:3807–3826

    Article  MATH  Google Scholar 

  • Michel JC, Moulinec H, Suquet P (2001) A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int J Num Method Eng 52:139–160

    Article  Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Rat Mech Anal 11:415–488

    Article  MathSciNet  MATH  Google Scholar 

  • Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and non linear properties of composites. C R Acad Sci Paris II 318:1417–1423

    MATH  Google Scholar 

  • Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Method Appl Mech Eng 157:69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Müller WH (1996) Mathematical versus experimental stress analysis of inhomogeneities in solids. J Phys IV 6(C1):139–148

    Google Scholar 

  • Mura T (1963) Continuous distribution of moving dislocations. Philos Mag 89:843–857

    Article  Google Scholar 

  • Nazarov AA, Shenderova OA, Brenner DW (2000) On the disclination-structural unit model of grain boundaries. Mater Sci Eng A 281(1):148–155

    Article  Google Scholar 

  • Neff P, Jeong J, Ramidreza H (2009) Subgrid interaction and micro-randomness—Novel invariance requirements in infinitesimal gradient elasticity. Int J Solids Struct 46:4261–4276

    Article  MATH  Google Scholar 

  • Neumann S, Herrmann KP, Müller WH (2002) Stress/strain computation in heterogeneous bodies with discrete fourier transforms—different approaches. Comput Mater Sci 25:151–158

    Article  Google Scholar 

  • Nowacki W (1986) Theory of asymmetric elasticity. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Nye JF (1953) Some geometrical relations in dislocated crystals. Acta Metall 1:153–162

    Article  Google Scholar 

  • Prakash A, Lebensohn RA (2012) Simulation of micro mechanical behavior of polycrystals: Finite Elements versus Fast Fourier Transforms. Model Simul Mater Sci Eng 17:64,010–64,016

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical recipes in C++. The art of scientific computing, 2nd edn. Cambridge University Press, USA

    Google Scholar 

  • Romanov AE, Vladimirov VI (1992) Disclinations in crystalline solids. In: Nabarro FRN (ed) Dislocations in solids, vol 9. North-Holland, Amsterdam, pp 191–402

    Google Scholar 

  • Roy A, Acharya A (2005) Finite element approximation of field dislocation mechanics. J Mech Phys Solids 53:143–170

    Article  MATH  Google Scholar 

  • Smyshlyaev VP, Fleck NA (1994) Bounds and estimates for linear composites with strain gradient effects. J Mech Phys Solids 42:1851–1882

    Article  MathSciNet  MATH  Google Scholar 

  • Taupin V, Capolungo L, Fressengeas C, Das A, Upadhyay M (2013) Grain boundary modeling using an elasto-plastic theory of dislocation and disclination fields. J Mech Phys Solids 61:370–384

    Article  Google Scholar 

  • Upadhyay MV (2014) On the role of defect incompatibilities on mechanical properties of polycrystalline aggregates: a multi-scale study. Ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, Altanta, USA

    Google Scholar 

  • Upadhyay MV, Capolungo L, Taupin V, Fressengeas C (2011) Grain boundary and triple junction energies in crystalline media: a disclination based approach. Int J Solids Struct 48(22):3176–3193

    Article  Google Scholar 

  • Upadhyay MV, Capolungo L, Taupin V, Fressengeas C (2013) Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and g-disclinations. Philos Mag 93:794–832

    Article  Google Scholar 

  • Vinogradov V, Milton GW (2008) An accelerated FFT algorithm for thermoelastic and non-linear composites. Int J Num Meth Eng 76:1678–1695

    Article  MathSciNet  MATH  Google Scholar 

  • Volterra S (1907) Sur l’équilibre des corps élastiques multiplement connexes. Ann Sci Ecol Norm Sup III 24:401–517

    MathSciNet  MATH  Google Scholar 

  • Willis JR (1967) Second-order effects of dislocations in anisotropic crystals. Int J Eng Sci 5:171–190

    Article  MATH  Google Scholar 

  • Zheng QS, Zhao Z (2004) Green’s function and Eshelby’s fields in couple-stress elasticity. Int J Multiscale Comput Eng 2:15–27

    Google Scholar 

Download references

Acknowledgments

SB would like to thank Professors P. Neff, W. H. Müller and S. Forest for fruitful discussions during the conference. This work is supported by the French State through the National Research Agency (ANR) under the program Investment in the future (LabEx DAMAS referenced as ANR-11-LABX-0008-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Berbenni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berbenni, S., Taupin, V., Fressengeas, C., Capolungo, L. (2016). A Fast Fourier Transform-Based Approach for Generalized Disclination Mechanics Within a Couple Stress Theory. In: Altenbach, H., Forest, S. (eds) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-31721-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31721-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31719-9

  • Online ISBN: 978-3-319-31721-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics