Skip to main content
Log in

Non-metric Connection and Metric Anomalies in Materially Uniform Elastic Solids

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Metric anomalies arising from a distribution of point defects (intrinsic interstitials, vacancies, point stacking faults), thermal deformation, biological growth, etc. are well known sources of material inhomogeneity and internal stress. By emphasizing the geometric nature of such anomalies we seek their representations for materially uniform crystalline elastic solids. In particular, we introduce a quasi-plastic deformation framework where the multiplicative decomposition of the total deformation gradient into an elastic and a plastic deformation is established such that the plastic deformation is further decomposed multiplicatively in terms of a deformation due to dislocations and another due to metric anomalies. We discuss our work in the context of quasi-plastic strain formulation and Weyl geometry. We also derive a general form of metric anomalies which yield a zero stress field in the absence of other inhomogeneities and any external sources of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The domain of the partial function \(\hat{W}(\cdot,\boldsymbol{X})\), for \(\boldsymbol{X}\in\mathcal{B}\), is customarily assumed to be \(\mathit{InvLin}^{+}\), the space where the deformation gradients reside [27, 36], which, under the Principle of Material Frame Indifference, gets restricted to its subset \(\mathit{Sym}^{+}\). In presence of certain material inhomogeneities (e.g., disclinations), a well-defined element in \(\mathit{InvLin}^{+}\) may not exist to appear in the constitutive function. Our treatment bypasses this limitation, as it is always guaranteed that a well-defined element in \(\mathit{Sym}^{+}\) exists to appear in \(\hat{W}(\cdot,\boldsymbol{X})\) as an argument. This well-defined element could be, in our context, any of the standard measures of strain.

  2. Apart from the point symmetry group \(\mathcal{G}\), which essentially describes rotational symmetries, the material structure presently under consideration possesses, due to its expanse in the Euclidean 3-space, spatial translational symmetries.

  3. A \(\mathit{Unim}\)-principal bundle is a principal fibre bundle whose structure group is the group \(\mathit{Unim}\).

  4. Within the realm of the classical solutions of the PDEs that we are considering here, the existence and uniqueness theorems of Cauchy-Kowalevski and Holmgren do no extend to the class of smooth functions which are not analytic; in this context, we would like to refer to the well-known Lewy’s example that demonstrates a linear PDE with smooth coefficients which has no solution [23].

  5. This is with reference to Weingarten’s classical theorem [37] in linear elasticity and the subsequent construction of elementary dislocations and disclinations by Volterra [35] as the fundamental line singularities in a linear elastic solid. The same construction also holds in non-linear elasticity, cf. [44, Chap. 1] and [40].

  6. Recall, from our discussion of quasi-plastic deformation in the last section, the tensor \(\boldsymbol{H}\) which is now identified with \(\operatorname{Grad} \boldsymbol{\chi}\) in the absence of material inhomogeneities.

References

  1. Anthony, K.H.: Die theorie der disklinationen. Arch. Ration. Mech. Anal. 39, 43–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anthony, K.H.: Nonmetric connexions, quasidislocations, and quasidisclinations: A contribution to the theory of non-mechanical stresses in crystals. In: Simmons, J.A., Bullough, R. (eds.) Fundamental Aspects of Dislocation Theory, vol. 1. Nat. Bur. Stand. (U.S.) Spec. Publ., vol. 317, pp. 637–649 (1970)

    Google Scholar 

  3. Anthony, K.H.: Die theorie der nichtmetrischen Spannungen in Kristallen. Arch. Ration. Mech. Anal. 40, 50–78 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anthony, K.H.: Crystal disclinations versus continuum theory. Solid State Phenom. 87, 15–46 (2002)

    Article  Google Scholar 

  5. Barron, T.H.K.: Generalized theory of thermal expansion of solids. In: Ho, C.Y. (ed.) Thermal Expansion of Solids, pp. 1–105. ASM International, Materials Park (1998)

    Google Scholar 

  6. Bilby, B.A., Bullough, R.M., Smith, E.: Continuous distributions of dislocations: A new application of the methods of non–Riemannian geometry. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 231, 263–273 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bilby, B.A., Gardner, L.R.T., Grinberg, A., Zorawski, M.: Continuous distributions of dislocations. VI. Non-metric connexions. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 292, 105–121 (1966)

    Article  ADS  MATH  Google Scholar 

  8. de Wit, R.: A view of the relation between the continuum theory of lattice defects and non-Euclidean geometry in the linear approximation. Int. J. Eng. Sci. 19, 1475–1506 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Epstein, M., de León, M.: Homogeneity without uniformity: Towards a mathematical theory of functionally graded materials. Int. J. Solids Struct. 37, 7577–7591 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Epstein, M., Elzanowski, M.: Material Inhomogeneities and Their Evolution, a Geometric Approach. Springer, Berlin (2007)

    MATH  Google Scholar 

  11. Eshelby, J.D.: Point defects. In: Hirsch, P.B. (ed.) The Physics of Metals—Sir Nevill Mott 60th Anniversary Volume, pp. 1–42. Cambridge University Press, Cambridge (1975)

    Google Scholar 

  12. Falk, F.: Theory of elasticity of coherent inclusions by means of non-metric geometry. J. Elast. 11, 359–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Günther, H., Zorawski, M.: On geometry of point defects and dislocations. Ann. Phys. 46, 41–46 (1985)

    Article  MATH  Google Scholar 

  14. Hehl, F.W., McCrea, J.D., Mielkeand, E.W., Ne’eman, Y.: Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  15. Kiritani, M.: Similarity and difference between fcc, bcc and hcp metals from the view point of point defect cluster formation. J. Nucl. Mater. 276, 41–49 (2000)

    Article  ADS  Google Scholar 

  16. Kiritani, M., Satoh, Y., Kizuka, Y., Arakawa, K., Ogasawara, Y., Arai, S., Shimomura, Y.: Anomalous production of vacancy clusters and the possibility of plastic deformation of crystalline metals without dislocations. Philos. Mag. Lett. 79, 797–804 (1999)

    Article  ADS  Google Scholar 

  17. Kohler, C.: Line defects in solid continua and point particles in \((2+1)\)-dimensional gravity. Class. Quantum Gravity 12, 2977–2993 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kondo, K.: On the geometrical and physical foundations of the theory of yielding. In: Proceedings of the 2nd Japan National Congress for Applied Mechanics, Tokyo, pp. 41–47 (1953)

    Google Scholar 

  19. Kröner, E.: Continuum theory of defects. In: Balian, R., et al. (eds.) Les Houches, Session XXXV, 1980—Physique des défauts, pp. 215–315. North-Holland, New York (1981)

    Google Scholar 

  20. Kröner, E.: The differential geometry of elementary point and line defects in Bravais crystals. Int. J. Theor. Phys. 29, 1219–1237 (1990)

    Article  MATH  Google Scholar 

  21. Kröner, E.: Crystal lattice defects and differential geometry. J. Mech. Behav. Mater. 5, 233–246 (1994)

    Article  Google Scholar 

  22. Lax, P.D.: Linear Algebra and Its Applications. Wiley, New Jersey (2007)

    MATH  Google Scholar 

  23. Lewy, H.: An example of a smooth linear partial differential equation without solution. Ann. Math. 66, 155–158 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lokhin, V.V., Sedov, L.I.: Nonlinear tensor functions of several tensor arguments. J. Appl. Math. Mech. 27, 597–629 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mardare, S.: The fundamental theorem of surface theory for surfaces with little regularity. J. Elast. 73, 251–290 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miri, M., Rivier, N.: Continuum elasticity with topological defects, including dislocations and extra-matter. J. Phys. A, Math. Gen. 35, 1727–1739 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Noll, W.: Materially uniform bodies with inhomogeneities. Arch. Ration. Mech. Anal. 27, 1–32 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  28. Povstenko, Y.Z.: Connection between non-metric differential geometry and mathematical theory of imperfections. Int. J. Eng. Sci. 29, 37–46 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rellich, F.: Perturbation Theory of Eigenvalue Problems. Gordon & Breach, New York (1969)

    MATH  Google Scholar 

  30. Roychowdhury, A., Gupta, A.: Material homogeneity and strain compatibility in thin elastic shells. Math. Mech. Solids (2015). doi:10.1177/1081286515599438

    Google Scholar 

  31. Schouten, J.A.: Ricci-Calculus, an Introduction to Tensor Analysis and Its Geometrical Applications. Springer, Berlin (1954)

    MATH  Google Scholar 

  32. Steinmann, P.: Geometrical Foundations of Continuum Mechanics, an Application to First- and Second-Order Elasticity and Elasto-Plasticity. Springer, Berlin (2015)

    MATH  Google Scholar 

  33. Talvacchia, J.C.: Prescribing the curvature of a principal bundle connection. Ph.D. thesis, University of Pennsylvania (1989). Dissertations available from ProQuest. Paper AAI9004831. http://repository.upenn.edu/dissertations/AAI9004831

  34. Vineyard, G.H.: General introduction. Discuss. Faraday Soc. 31, 7–23 (1961)

    Article  Google Scholar 

  35. Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. Éc. Norm. Super. 24, 401–517 (1907)

    MathSciNet  MATH  Google Scholar 

  36. Wang, C.-C.: On the geometric structure of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Ration. Mech. Anal. 27, 33–94 (1967)

    Article  MATH  Google Scholar 

  37. Weingarten, G.: Sulle superfici di discontinuità nella teoria della elasticità dei corpi solidi. Rend. R. Accad. Naz. Lincei 10, 57–60 (1901)

    MATH  Google Scholar 

  38. Weyl, H.: Space-Time-Matter. Dover, New York (1952)

    Google Scholar 

  39. Yavari, A.: A geometric theory of growth mechanics. J. Nonlinear Sci. 20, 781–830 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Yavari, A.: Compatibility equations of nonlinear elasticity for non-simply-connected bodies. Arch. Ration. Mech. Anal. 209, 237–253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yavari, A., Goriely, A.: Weyl geometry and the nonlinear mechanics of distributed point defects. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 468, 3902–3922 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  42. Yavari, A., Goriely, A.: The geometry of discombinations and its applications to semi-inverse problems in anelasticity. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 470, 20140403 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Yavari, A., Goriely, A.: Non-metricity and the nonlinear mechanics of distributed point defects. In: Knops, R.J., Chen, G.Q., Grinfeld, M. (eds.) Differential Geometry and Continuum Mechanics. Springer Proceedings in Mathematics and Statistics (2014)

    Google Scholar 

  44. Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roychowdhury, A., Gupta, A. Non-metric Connection and Metric Anomalies in Materially Uniform Elastic Solids. J Elast 126, 1–26 (2017). https://doi.org/10.1007/s10659-016-9578-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9578-1

Keywords

Mathematics Subject Classification

Navigation