Skip to main content
Log in

Sharp Weighted Korn and Korn-Like Inequalities and an Application to Washers

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper we prove asymptotically sharp weighted “first-and-a-half” \(2D\) Korn and Korn-like inequalities with a singular weight occurring from Cartesian to cylindrical change of variables. We prove some Hardy and the so-called “harmonic function gradient separation” inequalities with the same singular weight. Then we apply the obtained \(2D\) inequalities to prove similar inequalities for washers with thickness \(h\) subject to vanishing Dirichlet boundary conditions on the inner and outer thin faces of the washer. A washer can be regarded in two ways: As the limit case of a conical shell when the slope goes to zero, or as a very short hollow cylinder. While the optimal Korn constant in the first Korn inequality for a conical shell with thickness \(h\) and with a positive slope scales like \(h^{1.5}\), e.g., (Grabovsky and Harutyunyan in arXiv:1602.03601, 2016), the optimal Korn constant in the first Korn inequality for a washer scales like \(h^{2}\) and depends only on the outer radius of the washer as we show in the present work. The Korn constant in the first and a half inequality scales like \(h\) and depends only on \(h\). The optimal Korn constant is realized by a Kirchhoff Ansatz. This results can be applied to calculate the critical buckling load of a washer under in plane loads, e.g., (Antman and Stepanov in J. Elast. 124(2):243–278, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In general it is not known whether a best constant in a first or second Korn inequality exists. Here we speak about asymptotic optimality.

  2. Note, that in general the load need not be hydrostatic.

References

  1. Antman, S., Stepanov, A.B.: Radially symmetric steady states of nonlinearly elastic plates and shells. J. Elast. 124(2), 243–278 (2016). First online: 19 January 2016

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, S., Neff, P., Pauly, D., Starke, G.: Some Poincaré type inequalities for quadratic matrix fields. Proc. Appl. Math. Mech. 13, 359–360 (2013)

    Article  Google Scholar 

  3. Conti, S., Dolzmann, G., Müller, S.: Korn’s second inequality and geometric rigidity with mixed growth conditions. Calc. Var. Partial Differ. Equ. 50, 437–454 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dafermos, C.: Some remarks on Korn’s inequality. Z. Angew. Math. Phys. 19(6), 913–920 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dauge, M., Suri, M.: On the asymptotic behaviour of the discrete spectrum in buckling problems for thin plates. Math. Methods Appl. Sci. 29, 789–817 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Desvillettes, L., Villani, C.: On a variant of Korn’s inequality arising in statistical mechanics. ESAIM Control Optim. Calc. Var. 8, 603–619 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedrichs, K.O.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48(2), 441–471 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grabovsky, Y., Harutyunyan, D.: Exact scaling exponents in Korn and Korn-type inequalities for cylindrical shells. SIAM J. Math. Anal. 46(5), 3277–3295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grabovsky, Y., Harutyunyan, D.: Rigorous derivation of the formula for the buckling load in axially compressed circular cylindrical shells. J. Elast. 120(2), 249–276 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grabovsky, Y., Harutyunyan, D.: Scaling intability of the buckling load in axially compressed circular cylindrical shells. J. Nonlinear Sci. 26(1), 83–119 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Grabovsky, Y., Harutyunyan, D.: Korn inequalities for shells with zero Gaussian curvature. Preprint. arXiv:1602.03601 (2016)

  12. Grabovsky, Y., Truskinovsky, L.: The flip side of buckling. Contin. Mech. Thermodyn. 19(3–4), 211–243 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Harutyunyan, D.: New asymptotically sharp Korn and Korn-like inequalities in thin domains. J. Elast. 117(1), 95–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harutyunyan, D.: Gaussian curvature as an identifier of shell rigidity. Preprint. arXiv:1606.03613 (2016)

  15. Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37(4), 491–511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kohn, R.V.: New integral estimates for deformations in terms of their nonlinear strains. Arch. Ration. Mech. Anal. 78(2), 131–172 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kohn, R., Vogelius, M.: A new model for thin plates with rapidly varying thickness. II. A convergence proof. Q. Appl. Math. 43, 1–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kondratiev, V.A., Oleinik, O.A.: Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities. Usp. Mat. Nauk 43(5), 55–98 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Kondratiev, V., Oleinik, O.: On Korn’s inequalities. C. R. Math. Acad. Sci. Paris, Sér. I 308, 483–487 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Korn, A.: Solution générale du probléme d’équilibre dans la théorie de l’élasticité dans le cas oú les eórts sont donnés á la surface. Ann. Fac. Sci. Toulouse 10, 165–269 (1908)

    Article  MATH  Google Scholar 

  21. Korn, A.: Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Int. Cracovie Akademie Umiejet, Classe des Sci. Math. Nat., 705–724 (1909)

  22. Lewicka, M., Müller, S.: The uniform Korn-Poincaré inequality in thin domains. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28(3), 443–469 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lewicka, M., Müller, S.: On the optimal constants in Korn’s and geometric rigidity estimates in bounded and unbounded domains under Neumann boundary conditions. Indiana Univ. Math. J. 65(2), 377–397 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nazarov, S.A.: Weighted anisotropic Korn’s inequality for a junction of a plate and a rod. Sb. Math. 195, 553–583 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nazarov, S.A.: Korn’s inequalities for junctions of elastic bodies with thin plates. Sib. Math. J. 46, 695–706 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nazarov, S.A.: Korn inequalities for elastic junctions of massive bodies, thin plates, and rods. Russ. Math. Surv. 63, 37–110 (2008)

    Article  MATH  Google Scholar 

  27. Nazarov, S.A., Slutskii, A.: Korn’s inequality for an arbitrary system of distorted thin rods. Sib. Math. J. 43, 1069–1079 (2002)

    Article  Google Scholar 

  28. Neff, P., Pauly, D., Witsch, K.-J.: A canonical extension of Korn’s first inequality to \(H(Curl)\) motivated by gradient plasticity with plastic spin. C. R. Math. Acad. Sci. Paris, Sér. I 349, 1251–1254 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Neff, P., Pauly, D., Witsch, K.-J.: A Korn’s inequality for incompatible tensor fields. In: Proceedings in Applied Mathematics and Mechanics, 6 June 2011

  30. Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. Studies in Mathematics and Its Application. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  31. Paroni, R., Tomasetti, G.: On Korn’s constant for thin cylindrical domains. Math. Mech. Solids 19(3), 318–333 (2014). http://mms.sagepub.com/content/early/2012/10/31/1081286512465080

    Article  MathSciNet  MATH  Google Scholar 

  32. Paroni, R., Tomassetti, G.: Asymptotically exact Korn’s constant for thin cylindrical domains. C. R. Math. Acad. Sci. Paris 350, 749–752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Payne, L.E., Weinberger, H.F.: On Korn’s inequality. Arch. Ration. Mech. Anal. 8, 89–98 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ryzhak, E.I.: Korn’s constant for a parallelepiped with a free face or pair of faces. Math. Mech. Solids 4(1), 35–55 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the referee for spotting 2 errors in the initial version of the manuscript. We are also grateful to Graeme Milton and the University of Utah for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davit Harutyunyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, D. Sharp Weighted Korn and Korn-Like Inequalities and an Application to Washers. J Elast 127, 59–77 (2017). https://doi.org/10.1007/s10659-016-9596-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9596-z

Keywords

Mathematics Subject Classification

Navigation