Skip to main content
Log in

Korn’s second inequality and geometric rigidity with mixed growth conditions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Geometric rigidity states that a gradient field which is \(L^p\)-close to the set of proper rotations is necessarily \(L^p\)-close to a fixed rotation, and is one key estimate in nonlinear elasticity. In several applications, as for example in the theory of plasticity, energy densities with mixed growth appear. We show here that geometric rigidity holds also in \(L^p+L^q\) and in \(L^{p,q}\) interpolation spaces. As a first step we prove the corresponding linear inequality, which generalizes Korn’s inequality to these spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostiniani, V., Dal Maso, G., DeSimone, A.: Linear elasticity obtained from finite elasticity by \(\Gamma \)-convergence under weak coerciveness conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(5), 715–735 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Butzer, P.L., Berens, H.: Semi-Groups of Operators and Approximation. Die Grundlehren der mathematischen Wissenschaften, Band 145. Springer, New York (1967)

  3. Conti, S., Schweizer, B.: Rigidity and gamma convergence for solid–solid phase transitions with \(SO(2)\)-invariance. Commun. Pure Appl. Math. 59, 830–868 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

  5. Federer, H.: Geometric measure theory. Repr. of the 1969 ed. In: Classics in Mathematics. Springer, Berlin (1996)

  6. Fonseca, I., Leoni, G.: Modern methods in the calculus of variations: \(L^p\) spaces. Springer, Berlin (2007)

  7. Friedrichs, K.O.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48(2), 441–471 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  8. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MATH  Google Scholar 

  9. Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gobert, J.: Une inégalité fondamentale de la théorie de l’élasticité. Bull. Soc. R Sci. Liège 31, 182–191 (1962)

    MATH  MathSciNet  Google Scholar 

  11. Hlaváček, I., Nečas, J.: On inequalities of Korn’s type. I. Boundary-value problems for elliptic system of partial differential equations. Arch. Ration. Mech. Anal. 36, 305–311 (1970)

    Article  MATH  Google Scholar 

  12. Hunt, R.A.: On \(L(p,\, q)\) spaces. Enseignement Math. 12(2), 249–276 (1966)

    MATH  MathSciNet  Google Scholar 

  13. John, F.: Rotation and strain. Commun. Pure Appl. Math. 14, 391–413 (1961)

    Article  MATH  Google Scholar 

  14. John, F.: Bounds for deformations in terms of average strains. In: Proceedings of the 3rd Symposium on Inequalities III, Los Angeles, 1969, pp. 129–144 (1972)

  15. Kohn, R.V.: New integral estimates for deformations in terms of their nonlinear strains. Arch. Ration. Mech. Anal. 78, 131–172 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kondrat\(^\prime \)ev, V.A., Oleĭnik, O.A.: Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities. Uspekhi Mat. Nauk 43 5(263), 55–98, 239 (1988)

  17. Korn, A.: Die Eigenschwingungen eines elastischen Körpers mit ruhender Oberfläche. Akad. der Wissensch. Munich Math. Phys. Kl. Berichte 36, 351–401 (1906)

    Google Scholar 

  18. Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité, dans le cas ou les efforts sont donnés à la surface. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 10(2), 165–269 (1908)

    MATH  MathSciNet  Google Scholar 

  19. Korn, A.: Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad, umiejet (Classe Sci. Math. Nat.), 706–724 (1909)

  20. Lunardi, A.: Interpolation theory, 2nd edn. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). In: Lecture Notes on Scuola Normale Superiore di Pisa (New Series). Edizioni della Normale, Pisa (2009)

  21. Nitsche, J.A.: On Korn’s second inequality. RAIRO Anal. Numér. 15(3), 237–248 (1981)

    MATH  MathSciNet  Google Scholar 

  22. Peetre, J.: Nouvelles propriétés d’espaces d’interpolation. C R Acad. Sci. Paris 256, 1424–1426 (1963)

    MATH  MathSciNet  Google Scholar 

  23. Rešetnjak, J.G.: Liouville’s conformal mapping theorem under minimal regularity hypotheses. Sibirsk. Mat. Ž. 8, 835–840 (1967)

    MathSciNet  Google Scholar 

  24. Rešetnjak, J.G.: Estimates for certain differential operators with finite-dimensional kernel. Sibirsk. Mat.Ž. 11, 414–428 (1970)

    MathSciNet  Google Scholar 

  25. Rešetnjak, J.G.: The estimation of stability in Liouville’s theorem on conformal mappings of multidimensional spaces. Sibirsk. Mat. Ž. 11, 1121–1139, 1198 (1970)

    Google Scholar 

  26. Rešetnjak, J.G.: Stability estimates in Liouville’s theorem, and the \(L_{p}\)-integrability of the derivatives of quasiconformal mappings. Sibirsk. Mat. Ž. 17(4), 868–896 (1976)

    MathSciNet  Google Scholar 

  27. Rešetnjak, J.G.: Stability estimates in the class \(W^{1}_{p}\) in Liouville’s conformal mapping theorem for a closed domain. Sibirsk. Mat. Ž. 17(6), 1382–1394, 1439 (1976)

  28. Scardia, L., Zeppieri, C.: Line-tension model for plasticity as the \(\gamma \)-limit of a nonlinear dislocation energy. SIAM J. Math. Anal. 44, 2372–2400 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Smith, K.T.: Formulas to represent functions by their derivatives. Math. Ann. 188, 53–77 (1970)

    Article  MathSciNet  Google Scholar 

  30. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton (1970)

  31. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

  32. Ting, T.W.: Generalized Korn’s inequalities. Tensor (N.S.) 25, 295–302 (1972) (Commemoration volumes for Prof. Dr. Akitsugu Kawaguchi’s seventieth birthday, vol. II.)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Müller.

Additional information

Communicated by L.Ambrosio.

This work was partially supported by the Deutsche Forschungsgemeinschaft through the Forschergruppe 797 “Analysis and computation of microstructure in finite plasticity”, projects CO 304/4-2 (first author), DO 633/2-1 (second author), and MU 1067/9-2 (third author).

Appendix: Extension

Appendix: Extension

The subsequent extension theorem for functions with mixed growth follows immediately from the \(L^2\)-version in [21]. We include a sketch of the proof for the convenience of the reader.

Theorem 5.1

Let \(\varphi \in \mathrm{Lip}(\mathbb R ^{n-1};\mathbb R )\) be a Lipschitz function with \(\varphi (0)=0\) and Lipschitz constant \(L\), let \(R>0\) and set \(\Omega =B(0,R)\cap \{(x^{\prime },x_n)\in \mathbb R ^{n-1}\times \mathbb R :x_n< \varphi (x^{\prime })\}\). Suppose that \(1<p<q<\infty \) and that \(u\in W^{1,1}(\Omega ;\mathbb R ^n)\) with

$$\begin{aligned} D u + D u^T= f + g, \end{aligned}$$
(5.1)

where \( f \in L^p(\Omega ;\mathbb R ^{n\times n})\) and \(g \in L^q(\Omega ;\mathbb R ^{n\times n})\). Then there exists for \(r=R/(2\sqrt{1+L^2})\) a function \(w\in W^{1,1}(B(0,r);\mathbb R ^n)\), and matrix fields \(\widetilde{f}\), \(\widetilde{g}\) such that \(w=u\), \(\widetilde{f}= f \), \(\widetilde{g}=g\) on \(\Omega \cap B(0,r)\) and

$$\begin{aligned} D w + D w^T= \widetilde{f}+ \widetilde{g}\quad \text{ on } B(0,r) \end{aligned}$$

with

$$\begin{aligned} \Vert \widetilde{f}\Vert _{L^p(B(0,r))}\le c \Vert f \Vert _{L^p(B(0,R)\,\cap \,\Omega )},\quad \Vert \widetilde{g}\Vert _{L^q(B(0,r))}\le c \Vert g \Vert _{L^q(B(0,R)\,\cap \,\Omega )}. \end{aligned}$$
(5.2)

The constant \(c\) depends only on \(n\), \(p\), \(q\), \(\Omega \) but not on \(u\), \( f \), \(g\).

Proof

Let \(\delta \in C^2(B(0,R)\setminus \Omega )\) be a function such that

$$\begin{aligned} 2\mathrm{dist}(x,\Omega )\le \delta (x)\le C \mathrm{dist}(x,\Omega ) \end{aligned}$$

and

$$\begin{aligned} |D^\alpha \delta (x)| \le C \delta ^{1-|\alpha |}(x),\quad \alpha \in \mathbb N ^n, \end{aligned}$$
(5.3)

see, e.g., [30]. Fix a function \(\psi \in C^1(\mathbb R )\) with

$$\begin{aligned} \int _1^2 \psi (\lambda )\,\mathrm{d}\lambda =1,\quad \int _1^2 \lambda \psi (\lambda )\,\mathrm{d}\lambda =0. \end{aligned}$$
(5.4)

We set \(w=u\) on \(\Omega \) and for \(x\in B(0,r)\setminus \Omega \) we define

$$\begin{aligned} w(x)=\int _1^2 \psi (\lambda )\left[ u(x-\lambda \delta (x) e_n) - \lambda D\delta (x)u_n(x-\lambda \delta (x) e_n)\right] \,\mathrm{d}\lambda . \end{aligned}$$

For ease of notation we omit the arguments in the following calculations and write \(\delta =\delta (x)\) and \(u=u(x-\lambda \delta (x) e_n)\) with the same convention for their derivatives. By the chain rule

$$\begin{aligned} Dw(x)&=\int _1^2 \psi (\lambda )\left[ Du (\mathrm{Id}- \lambda e_n\otimes D\delta ) - \lambda D\delta \otimes Du_n (\mathrm{Id}- \lambda e_n\otimes D\delta ) -\lambda u_n D^2\delta \right] \,\mathrm{d}\lambda \\&= \int _1^2 \psi (\lambda )\left[ Du - \lambda D_nu \otimes D\delta - \lambda D\delta \otimes Du_n + \lambda ^2 D_nu_n D\delta \otimes D\delta -\lambda u_nD^2\delta \right] \,\mathrm{d}\lambda . \end{aligned}$$

Then the symmetric part of the gradient is given by

$$\begin{aligned}&\!\!\! Ew(x)=\\&\int _1^2 \psi (\lambda )\left[ Eu - \lambda (Eu e_n)\otimes D\delta - \lambda D\delta \otimes (Eu e_n) + \lambda ^2(Eu)_{nn} D\delta \otimes D\delta -\lambda u_nD^2\delta \right] \,\mathrm{d}\lambda . \end{aligned}$$

In the last term we write

$$\begin{aligned} u_n(x-\lambda \delta (x) e_n) = u_n(x- \delta (x) e_n) +\int _1^\lambda D_n u_n (x-s \delta (x) e_n)\delta (x) \,\mathrm{d}s. \end{aligned}$$

In view of the second property in (5.4) the weighted integral of \(u_n(x- \delta (x) e_n)\) is equal to zero, and the other term only depends on \((Eu)_{nn}\). We recall (5.1) and define for \(x\in B(0,r)\setminus \Omega \)

$$\begin{aligned} \widetilde{f}(x)&=\int _1^2 \psi (\lambda )\left[ f (x-\lambda \delta (x)e_n ) - \lambda ( f (x-\lambda \delta (x) e_n)e_n)\otimes D\delta (x) \right] \,\mathrm{d}\lambda \\&\quad - \int _1^2 \psi (\lambda )\left[ \lambda D\delta (x) \otimes ( f (x-\lambda \delta (x) e_n)e_n) \right] \,\mathrm{d}\lambda \\&\quad + \int _1^2 \psi (\lambda )\left[ \lambda ^2 f _{nn}(x-\lambda \delta (x) e_n) D\delta (x) \otimes D\delta (x) \right] \,\mathrm{d}\lambda \\&\quad - \int _1^2 \psi (\lambda ) \lambda \int _1^\lambda f _{nn}(x-s \delta (x)e_n) \delta (x) \,\mathrm{d}s\, D^2\delta (x) \,\mathrm{d}\lambda , \end{aligned}$$

and use the analogous definition for \(\widetilde{g}\) in \(x\in B(0,r)\setminus \Omega \). On \(B(0,r)\cap \Omega \) we set \(\widetilde{f}= f \) and \(\widetilde{g}=g\). It remains to show that

$$\begin{aligned} \Vert \widetilde{f}\Vert _{L^p(B(0,r)\setminus \Omega )}\le c \Vert f \Vert _{L^p(\Omega )},\quad \Vert \widetilde{g}\Vert _{L^q(B(0,r)\setminus \Omega )}\le c \Vert g\Vert _{L^q(\Omega )} \end{aligned}$$

with a constant which only depends on \(n\), \(p\), \(q\) and \(\Omega \). The calculation is identical to the proof of the estimate for the extension in [21, Lemma 4]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, S., Dolzmann, G. & Müller, S. Korn’s second inequality and geometric rigidity with mixed growth conditions. Calc. Var. 50, 437–454 (2014). https://doi.org/10.1007/s00526-013-0641-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0641-5

Mathematics Subject Classification (1991)

Navigation