Skip to main content
Log in

The flip side of buckling

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Buckling of slender structures under compressive loading is a failure of infinitesimal stability due to a confluence of two factors: the energy density non-convexity and the smallness of Korn’s constant. The problem has been well understood only for bodies with simple geometries when the slenderness parameter is well defined. In this paper, we present the first rigorous analysis of buckling for bodies with complex geometry. By limiting our analysis to the “near-flip” instability, we address the universal features of the buckling phenomenon that depend on neither the shape of the domain nor the degree of constitutive nonlinearity of the elastic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beatty M.F. (1971). Estimation of ultimate safe loads in elastic stability theory. J. Elast. 1(2): 95–120

    Article  MathSciNet  Google Scholar 

  2. Berdichevsky V.L. (1983). Variational Principles of Continuum Mechanics. (Russian) Nauka, Moscow

    Google Scholar 

  3. Biot M.A. (1965). Mechanics of Incremental Deformations. Wiley, New York

    Google Scholar 

  4. Budiansky B. (1974). Theory of buckling and post-buckling behavior of elastic structures. Adv. Appl. Mech. 14: 1–65

    Google Scholar 

  5. Capriz G. and Podio-Guidugli P. (1979). The role of Fredholm conditions in Signorini’s perturbation method. Arch. Ration. Mech. Anal. 70(3): 261–288

    Article  MATH  MathSciNet  Google Scholar 

  6. Chillingworth D.R.J., Marsden J.E. and Wan Y.H. (1982). Symmetry and bifurcation in three-dimensional elasticity. I. Arch. Ration. Mech. Anal. 80(4): 295–331

    Article  MATH  MathSciNet  Google Scholar 

  7. Ciarlet, P.G.: Mathematical elasticity. Vol. II, volume 27 of Studies in Mathematics and its Applications. North-Holland, Amsterdam (1997). Theory of plates

  8. Ciarlet P.G. and Destuynder P. (1979). A justification of nonlinear model in plate theory. Comput. Methods Appl. Mech. Eng. 17(18): 227–258

    Article  Google Scholar 

  9. Davies P.J. (1991). Buckling and barrelling instabilities of non-linearly elastic columns. Q. Appl. Math. 49(3): 407–426

    MATH  Google Scholar 

  10. Del Piero G. (1980). Lower bounds for the critical loads of elastic bodies. J. Elast. 10(2): 135–143

    MATH  MathSciNet  Google Scholar 

  11. Del Piero, G., Rizzoni, R.: Two sided estimates for local minimizers in compressible elasticity. Preprint

  12. Euler, L.: Additamentum I. De curvis elasticis. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti. Series prima Opera mathematica, 24, 231–297, Lausanne, 1744. Edited by Constantin Carathéodory, Birkhaüser, Bäsel, Switzerland, 1967. English translation by Oldfather, W. A., Ellis, C. A. and Brown, D. M. in Isis, 20(1), 72–160 (1933)

  13. Föppl, A.: In Vorlesungen über technische Mechanik, vol. 5, pp. 132–139. Leipzig (1907)

  14. Fosdick R.L. and Shield R.T. (1963). Small bending of a circular bar superposed on finite extension or compression. Arch. Ration. Mech. Anal. 12: 223–248

    Article  MATH  MathSciNet  Google Scholar 

  15. Friesecke G., James R.D. and Müller S. (2002). A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11): 1461–1506

    Article  MATH  Google Scholar 

  16. Friesecke G., James R.D. and Müller S. (2006). A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2): 183–236

    Article  MATH  MathSciNet  Google Scholar 

  17. Fu Y.B. and Ogden R.W. (1999). Nonlinear stability analysis of pre-stressed elastic bodies. Contin. Mech. Thermodyn. 11(3): 141–172

    Article  MATH  MathSciNet  Google Scholar 

  18. Healey T.J. and Montes-Pizarro E.L. (2003). Global bifurcation in nonlinear elasticity with an application to barrelling states of cylindrical columns. J. Elast. 71(1–3): 33–58

    Article  MATH  MathSciNet  Google Scholar 

  19. Hill R. (1957). On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5: 229–241

    Article  MATH  MathSciNet  Google Scholar 

  20. Hill R. (1975). On the elasticity and stability of perfect crystals at finite strain. Math. Proc. Camb. Philos. Soc. 77: 225–240

    Article  MATH  Google Scholar 

  21. Holden J.T. (1964). Estimation of critical loads in elastic stability theory. Arch. Ration. Mech. Anal. 17: 171–183

    Article  MATH  MathSciNet  Google Scholar 

  22. Horgan C.O. (1995). Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37(4): 491–511

    Article  MATH  MathSciNet  Google Scholar 

  23. Kirchhoff G. (1850). Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40: 51–88

    MATH  Google Scholar 

  24. Koiter, W.T.: On the stability of elastic equilibrium. Ph.D. Thesis, Technische Hogeschool (Technological University of Delft), Delft, Holland (1945)

  25. Lecumberry, M., Müller, S: Stability of slender bodies under compression and validity of the von Kármán theory. Preprint

  26. Levinson M. (1968). Stability of a compressed neo-Hookean rectangular parallelepiped. J. Mech. Phys. Solids 16: 403–415

    Article  MATH  Google Scholar 

  27. Love A.E.H. (1927). A treatise on the mathematical theory of elasticity. Dover, New York

    MATH  Google Scholar 

  28. Marsden J.E. and Hughes T.J.R. (1994). Mathematical foundations of elasticity. Dover, New York

    Google Scholar 

  29. Monneau R. (2003). Justification of the nonlinear Kirchhoff–Love theory of plates as the application of a new singular inverse method. Arch. Ration. Mech. Anal. 169(1): 1–34

    Article  MATH  MathSciNet  Google Scholar 

  30. Mora M.G. and Müller S. (2004). A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Anal. NonLinéaire 21(3): 271–293

    Article  MATH  Google Scholar 

  31. Pantz O. (2001). Une justification partielle du modéle de plaque en flexion par Γ-convergence. C.R. Acad. Sci. Paris Ser. I, 332: 587–592

    MATH  MathSciNet  Google Scholar 

  32. Pantz O. (2003). On the justification of the nonlinear inextensional plate model. Arch. Rational Mech. Anal. 167: 179–209

    Article  MATH  MathSciNet  Google Scholar 

  33. Pearson C.E. (1956). General theory of elastic stability. Q. Appl. Math. 14: 133–144

    MATH  MathSciNet  Google Scholar 

  34. Podio-Guidugli P. (2003). A new quasilinear model for plate buckling. J. Elast. 71(1-3): 157–182

    Article  MATH  MathSciNet  Google Scholar 

  35. Ryzhak E.I. (1999). Korn’s constant for a parallelepiped with a free face or pair of faces. Math. Mech. Solids 4(1): 35–55

    Article  MATH  MathSciNet  Google Scholar 

  36. Scherzinger W. and Triantafyllidis N. (1998). Asymptotic analysis of stability for prismatic solids under axial loads. J. Mech. Phys. Solids 46(6): 959–1007

    MathSciNet  Google Scholar 

  37. Signorini, A.: Sulle deformazioni termoelastiche finite. In: Proceedings of the 3rd International Cong. Appl. Mech., vol. 2, pp. 80–89 (1930)

  38. Simpson, H.C., Spector, S.J.: On bifurcation in finite elasticity: buckling of a rectangular rod. Preprint

  39. Simpson H.C. and Spector S.J. (1987). On the positivity of the second variation in finite elasticity. Arch. Ration. Mech. Anal. 98(1): 1–30

    MATH  MathSciNet  Google Scholar 

  40. Stoker J.J. (1968). Nonlinear Elasticity. Gordon and Breach Science Publishers, New York

    MATH  Google Scholar 

  41. Truesdell C. and Noll W. (2004). The non-linear field theories of mechanics. Springer, Berlin

    Google Scholar 

  42. Van Hove, L.: Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues. Nederl. Akad. Wetensch., Proc., 50, 18–23=Indagationes Math. 9, 3–8 (1947)

    Google Scholar 

  43. von Kármán, T.: Festigkeitsprobleme im Maschinenbau. In: Encyclopdie der Mathematischen Wissenschaften, vol. IV/4, pp. 311–385. Leipzig (1910)

  44. Zubov L.M. and Rudev A.N. (1993). On the peculiarities of the loss of stability of a non-linearly elastic rectangular beam. Prikl. Mat. Mekh. 57(3): 65–83

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Truskinovsky.

Additional information

Communicated by L.C. Evans

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabovsky, Y., Truskinovsky, L. The flip side of buckling. Continuum Mech. Thermodyn. 19, 211–243 (2007). https://doi.org/10.1007/s00161-007-0044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-007-0044-y

Keywords

PACS

Navigation