Skip to main content
Log in

The membrane shell model in nonlinear elasticity: A variational asymptotic derivation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

We consider a shell-like three-dimensional nonlinearly hyperelastic body and we let its thickness go to zero. We show, under appropriate hypotheses on the applied loads, that the deformations that minimize the total energy weakly converge in a Sobolev space toward deformations that minimize a nonlinear shell membrane energy. The nonlinear shell membrane energy is obtained by computing the Γ-limit of the sequence of three-dimensional energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Acerbi, G. Buttazzo, D. Percivale [1991], A variational definition for the strain energy of an elastic string.J. Elasticity, 25, pp. 137–148.

    MATH  MathSciNet  Google Scholar 

  2. E. Acerbi, N. Fusco [1984], Semicontinuity problems in the calculus of variations,Arch. Ratl. Mech. Anal., 86, pp. 125–145.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. S. Antman [1976a], Ordinary differential equations of one-dimensional nonlinear elasticity I: Foundations of the theories of nonlinearly elastic rods and shells,Arch. Ratl. Mech. Anal., 61, pp. 307–351.

    MATH  MathSciNet  Google Scholar 

  4. S. S. Antman [1976b], Ordinary differential equations of one-dimensional nonlinear elasticity II: Existence and regularity theory for conservative problems,Arch. Ratl. Mech. Anal., 61, pp. 353–393.

    MATH  MathSciNet  Google Scholar 

  5. S. S. Antman [1995],Nonlinear Problems of Elasticity, Applied Mathematical Sciences 107, Springer-Verlag, New York.

    MATH  Google Scholar 

  6. H. Attouch [1984],Variational Convergence for Functions and Operators, Pitman, Boston.

    MATH  Google Scholar 

  7. J. M. Ball [1977], Convexity conditions and existence theorems in nonlinear elasticity,Arch. Ratl. Mech. Anal., 63, pp. 337–403.

    MATH  Google Scholar 

  8. J. M. Ball, J. C. Currie, P. J. Olver [1981], Null Lagrangians, weak continuity, and variational problems of arbitrary order,J. Funct. Anal., 41, pp. 135–174.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Carrive-Bédouani [1995], Modélisation intrinsèque et analyse numérique d’un problème de coque mince en grands déplacements, Doctoral Dissertation, Université Paris-Dauphine.

  10. M. Carrive-Bédouani, P. Le Tallec, J. Mouro [1995], Approximations par éléments finis d’un modèle de coque géométriquement exact, INRIA Research Report #2504.

  11. P. G. Ciarlet [1980], A justification of the von Kármán equations,Arch. Ratl. Mech. Anal., 73, pp. 349–389.

    MATH  MathSciNet  Google Scholar 

  12. P. G. Ciarlet [1988],Mathematical Elasticity. Volume I: Three-Dimensional Elasticity, North-Holland, Amsterdam.

    MATH  Google Scholar 

  13. P. G. Ciarlet [1990],Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis, Masson/Springer-Verlag, Paris.

    MATH  Google Scholar 

  14. P. G. Ciarlet, P. Destuynder [1979a], A justification of the two-dimensional plate model,J. Mécanique, 18, pp. 315–344.

    MATH  MathSciNet  Google Scholar 

  15. P. G. Ciarlet, P. Destuynder [1979b], A justification of a nonlinear model in plate theory,Comput. Methods Appl. Mech. Eng., 17/18, pp. 227–258.

    Article  Google Scholar 

  16. P. G. Ciarlet, V. Lods [1994], Analyse asymptotique des coques linéairement élastiques. I. Coques “membranaires”,C. R. Acad. Sci. Paris, 318, Série I, pp. 863–868.

    MATH  MathSciNet  Google Scholar 

  17. P. G. Ciarlet, V. Lods, B. Miara [1994], Analyse asymptotique des coques linéairement élastiques. II. Coques “en flexion”,C. R. Acad. Sci. Paris, 319, Série I, pp. 95–100.

    MATH  MathSciNet  Google Scholar 

  18. B. Dacorogna [1982], Quasiconvexity and relaxation of nonconvex variational problems,J. Funct. Anal., 46, pp. 102–118.

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Dacorogna [1989]Direct Methods in the Calculus of Variations, Applied Mathematical Sciences 78, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  20. G. Dal Maso [1993],An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and their Applications, Birkäuser, Basel.

    Google Scholar 

  21. E. De Giorgi, T. Franzoni [1975], Su un tipo di convergenza variazionale,Atti. Accad. Naz. Lincei, 58, pp. 842–850.

    MATH  Google Scholar 

  22. P. Destuynder [1980],Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques, Doctoral Dissertation, Université Pierre et Marie Curie.

  23. I. Ekeland, R. Temam [1974],Analyse convexe et problèmes variationnels, Dunod, Paris.

    MATH  Google Scholar 

  24. J. L. Ericksen, C. Truesdell [1958], Exact theory of stress and strain in rods and shells,Arch. Ratl. Mech. Anal., 1, pp. 295–323.

    Article  MATH  MathSciNet  Google Scholar 

  25. D. D. Fox, J. C. Simo [1992], A drill rotation formulation for geometrically exact shells,Comput. Methods Appl. Mech. Eng., 98, pp. 329–343.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. D. Fox, A. Raoult, J. C. Simo [1993], A justification of nonlinear properly invariant plate theories,Arch. Ratl. Mech. Anal., 124, pp. 157–199.

    Article  MATH  MathSciNet  Google Scholar 

  27. K. O. Friedrichs, R. F. Dressler [1961], A boundary-layer theory for elastic plates,Comm. Pure Appl. Math., 14, pp. 1–33.

    MATH  MathSciNet  Google Scholar 

  28. A. L. Goldenveizer [1963], Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity,Prikl. Mat. Mech., 27, pp. 593–608.

    MATH  MathSciNet  Google Scholar 

  29. A. E. Green, P. M. Naghdi [1974], On the derivation of shell theories by direct approach,J. Appl. Mech., pp. 173–176.

  30. M. E. Gurtin [1981]An Introduction to Continuum Mechanics, Academic Press, New York.

    MATH  Google Scholar 

  31. A. Karwowski [1993], Dynamical models for plates and membranes. An asymptotic approach,J. Elasticity, 32, pp. 93–153.

    Article  MATH  MathSciNet  Google Scholar 

  32. H. Le Dret, A. Raoult [1993], Le modèle de membrane non linéaire comme limite variationnelle de l’élasticité non linéaire tridimensionnelle,C. R. Acad. Sci. Paris, 317, Série I, pp. 221–226.

    MATH  Google Scholar 

  33. H. Le Dret, A. Raoult [1995], The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity,J. Math. Pures Appl., 75, pp. 551–580.

    Google Scholar 

  34. P. Marcellini [1985], Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals,Manuscripta Math., 51, pp. 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  35. J. E. Marsden, T. J. R. Hughes [1983],Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs.

    MATH  Google Scholar 

  36. B. Miara [1994], Analyse asymptotique des coques membranaires non linéairement élastiques,C. R. Acad. Sci. Paris, 318, Série I, pp. 689–694.

    MATH  MathSciNet  Google Scholar 

  37. C. B. Morrey Jr. [1952], Quasiconvexity and the semicontinuity of multiple integrals,Pacific J. Math., 2, pp. 25–53.

    MATH  MathSciNet  Google Scholar 

  38. N. G. Meyers [1965], Quasiconvexity and lower semicontinuity of multiple variational integrals of any order,Trans. A.M.S., 119, pp. 125–149.

    Article  MATH  MathSciNet  Google Scholar 

  39. S. Müller [1990], Det=det. A remark on the distributional determinant,C. R. Acad. Sci. Paris, 311, Série I, pp. 13–17.

    MATH  Google Scholar 

  40. P. M. Naghdi [1972],The Theory of Plates and Shells, in Handbuch der Physik, vol. VIa/2, Springer-Verlag, Berlin.

    Google Scholar 

  41. D. Percivale [1991], The variational method for tensile structures, Politecnico di Torino, Dipartimento di Matematica Research Report #16.

  42. A. Raoult [1986], Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff material,Apl. Mat., 6, pp. 417–419.

    MathSciNet  Google Scholar 

  43. A. Raoult [1988], Analyse mathématique de quelques modèles de plaques et de poutres élastiques ou élasto-plastiques, Doctoral Dissertation, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  44. E. Sanchez-Palencia [1989a], Statique et dynamique des coques minces. I. Cas de flexion pure non inhibée,C. R. Acad. Sci. Paris, 309, Série I, pp. 411–417.

    MATH  MathSciNet  Google Scholar 

  45. E. Sanchez-Palencia [1989b], Statique et dynamique des coques minces. II. Cas de flexion pure inhibée,C. R. Acad. Sci. Paris, 309, Série I, pp. 531–537.

    MATH  MathSciNet  Google Scholar 

  46. E. Sanchez-Palencia [1990], Passage à la limite de l’élasticité tridimensionnelle à la théorie asymptotique des coques minces,C. R. Acad. Sci. Paris, 311, Série II, pp. 909–916.

    MATH  MathSciNet  Google Scholar 

  47. M. J. Sewell [1967], On configuration-dependent loading,Arch. Ratl. Mech. Anal., 23, pp. 327–351.

    MATH  MathSciNet  Google Scholar 

  48. J. C. Simo, D. D. Fox [1989], On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization,Comput. Methods Appl. Mech. Eng., 72, pp. 267–304.

    Article  MATH  MathSciNet  Google Scholar 

  49. J. C. Simo, D. D. Fox, M. S. Rifai [1990a], On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory,Comput. Methods Appl. Mech. Eng., 79, pp. 21–70.

    Article  MATH  MathSciNet  Google Scholar 

  50. J. C. Simo, D. D. Fox, M. S. Rifai [1990b], On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching,Comput. Methods Appl. Mech. Eng., 81, pp. 91–126.

    Article  MATH  MathSciNet  Google Scholar 

  51. J. C. Simo, N. Tarnow [1994], A new energy and momentum conserving algorithm for the nonlinear dynamics of shells,Int. J. Numer. Methods Eng., 37, pp. 2527–2549.

    Article  MATH  MathSciNet  Google Scholar 

  52. J. C. Simo, L. Vu-Quoc [1988], On the dynamics in space of rods undergoing large overall deformations. A geometrically exact approach,Comput. Methods Appl. Mech. Eng., 66, pp. 125–161.

    Article  MATH  MathSciNet  Google Scholar 

  53. J. C. Simo, L. Vu-Quoc [1991], A geometrically exact rod model incorporating shear and torsion-warping deformation,Int. J. Solids Structures, 27, pp. 371–393.

    Article  MATH  MathSciNet  Google Scholar 

  54. C. C. Wang, C. Truesdell [1973],Introduction to Rational Elasticity, Noordhoff, Gröningen.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jerrold Marsden and Stephen Wiggins

This paper is dedicated to the memory of Juan C. Simo

This paper was solicited by the editors to be part of a volume dedicated to the memory of Juan Simo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Dret, H., Raoult, A. The membrane shell model in nonlinear elasticity: A variational asymptotic derivation. J Nonlinear Sci 6, 59–84 (1996). https://doi.org/10.1007/BF02433810

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02433810

Keywords

Navigation