Skip to main content
Log in

Phylogeny of five predominant pospiviroid species in Belgium

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In Belgium pospiviroids are routinely detected in various hosts. The most frequently found pospiviroids are: Citrus exocortis viroid (CEVd), Chrysanthemum stunt viroid (CSVd), Potato spindle tuber viroid (PSTVd), Tomato apical stunt viroid (TASVd) and Tomato chlorotic dwarf viroid (TCDVd). Apart from the high incidence of pospiviroids in latently-infected ornamentals, viroids have also been found in plants where they cause disease: PSTVd and TCDVd in tomatoes and CSVd in chrysanthemum. In order to gain more epidemiological data on these infections, this study has conducted phylogenetic analyses of Belgian isolates for each of these five pospiviroid species. PSTVd and CEVd-isolates show a clustering depending on host plant identity. This was not observed for TCDVd and TASVd. A very high degree of sequence similarity was noticeable for CSVd-isolates from various hosts. During the past decade, PSTVd and CSVd-infected mother plants have been systematically eradicated in Belgium after positive detection results, also when found in symptomless plants, leading to a decreased trend of these quarantine pests in the past few years. However, other non-quarantine pospiviroid species are still ubiquitously present in many ornamentals. Since these pospiviroids can be equally harmful to crops as the two quarantine pests PSTVd and CSVd, there is still a risk that transmission occurs from symptomless-infected ornamental plants to economically important crops in Belgium such as tomato, pepper and chrysanthemum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker, R., Candresse, T., Dormannse Simon, E., Gilioli, G., Gregoire, J. C., Jeger, M. J., et al. (2011). Scientific opinion on the assessment of the risk of solanceous pospiviroids for the EU territory and the identification and evaluation of risk management options. Scientific opinion, EFSA panel on plant health (PLH). The EFSA Journal, 9, 2330.

    Article  Google Scholar 

  • Candresse, T., Marais, A., Olivier, F., Verdin, E., & Blancard, D. (2007). First report of the presence of tomato apical stunt viroid on tomato in Senegal. Plant Disease, 91, 330.

    Article  Google Scholar 

  • Chung, B. N., Choi, G. S., Kim, H. R., & Kim, J. S. (2001). Chrysanthemum stunt viroid in Dendranthema grandiflorum. Plant Pathology Journal, 17, 194–200.

    Google Scholar 

  • Codoner, F. M., Daros, J. A., Sole, R. V., & Elena, S. F. (2006). The fittest versus the flattest: experimental confirmation of the quasispecies effect with subviral pathogens. PLoS Pathogens, 2, 1187–1193.

    Article  CAS  Google Scholar 

  • Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S. F., Pallas, V., Randles, W., et al. (2014). Current status of viroid taxonomy. Archives of Virology, 159, 3467–3478.

    Article  CAS  PubMed  Google Scholar 

  • Diener, T. O. (1971). Potato spindle tuber virus: replicating, low molecular weight RNA. Virology, 45, 411–428.

    Article  CAS  PubMed  Google Scholar 

  • Flores, R., Hernandez, C., de Alba, A. E. M., Daros, J. A., & Di Serio, F. (2005). Viroids and viroid-host interactions. Annual Review of Phytopathology, 43, 117–139.

    Article  CAS  PubMed  Google Scholar 

  • Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., Lopez-Carrasco, A., et al. (2015). Viroids, the simplest RNA replicons: how they manipulate their hosts for being propagated and how their hosts react containg the infection. Virus Research, 209, 136–145.

    Article  CAS  PubMed  Google Scholar 

  • James, T., Mulholland, V., Jeffries, C., & Chard, J. (2008). First report of Tomato chlorotic dwarf viroid infecting commercial petunia stocks in the United Kingdom. Plant Pathology, 57, 400.

    Article  Google Scholar 

  • Luigi, M., Luison, D., Tomassoli, L., & Faggioli, F. (2011). Natural spread and molecular analysis of pospiviroids infecting ornamentals in Italy. Journal of Plant Pathology, 93, 491–495.

    CAS  Google Scholar 

  • Matsushita, Y., & Tsuda, S. (2015). Host ranges of Potato spindle tuber viroid, Tomato chlorotic viroid, Tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. European Journal of Plant Pathology, 141, 193–197.

    Article  Google Scholar 

  • Olivier, T., Demonty, E., Govers, J., Belkheir, K., Huyshauwer, V., & Steyer, S. (2012). Occurrence of pospiviroids in potato, tomato and some ornamentals plants in Belgium. Poster Abstract. AAB meeting of Advances in Plant Virology, Dublin.

  • Olivier, T., Demonty, E., Fauche, F., & Steyer, S. (2014). Generic detection and identification of pospiviroids. Archives of Virology, 159, 2097–2102.

    Article  CAS  PubMed  Google Scholar 

  • Önelge, N. (1997). Direct nucleotide sequencing of Citrus exocortis viroid (CEV). Turkish Journal of Agriculture and Forestry, 21, 419–422.

    Google Scholar 

  • Owens, R. A., Girsova, N. V., Kromina, K. A., Lee, I. M., Mozhaeva, K. A., & Kastalyeva, T. B. (2009). Russian isolates of Potato spindle tuber viroid exhibit low sequence diversity. Plant Disease, 93, 752–759.

    Article  CAS  Google Scholar 

  • Parrella, G., & Numitone, G. (2014). First report of Tomato apical stunt viroid in tomato in Italy. Plant Disease, 98, 1164.

    Article  Google Scholar 

  • Rebenstorf, K., Candresse, T., Dulucq, M. J., Büttner, C., & Obermeier, C. (2006). Host species-dependent population structure of a pollen-borne plant virus, Cherry leaf roll virus. Journal of Virology, 80(5), 2453–2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

  • Sano, T., Mimura, R., & Ohshima, K. (2001). Phylogenetic analysis of hop and grapevine isolates of Hop stunt viroid supports a grapevine origin for hop stunt disease. Virus Genes, 22(1), 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. P. (2006). Viroids from ornamental plants – a potential threat to tomato and potato crops. Canadian Journal of Plant Pathology – Revue Canadienne de Phytopathologie, 28(2), 328–329.

    Google Scholar 

  • Tabler, M., & Tsagris, M. (2004). Viroids: petite RNA pathogens with distinguished talents. Trends in Plant Science, 9(7), 339–348.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.

    CAS  PubMed  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bogaert, N., Smagghe, G., & De Jonghe, K. (2015). The role of weeds in the epidemiology of pospiviroids. Weed Research, 55, 631–638.

    Article  CAS  Google Scholar 

  • Van Bogaert, N., Olivier, T., Bragard, C., Maes, M., Smagghe, G., & De Jonghe, K. (2016). Assessment of pospiviroid transmission by Myzus persicae, Macrolophus pygmaeus and Bombus terrestris. European Journal of Plant Pathology, 144, 289–296.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., & Roenhorst, J. W. (2010). High stability of original predominant pospiviroid genotypes upon mechanical inoculation from ornamentals to potato and tomato. Archives of Virology, 155, 269–274.

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Willemem, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110, 823–831.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Roenhorst, J. W., Steyer, S., & Michelante, D. (2007). First report of Potato spindle tuber viroid in tomato in Belgium. Plant Disease, 91, 1055.

    Article  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., & Roenhorst, J. W. (2008a). First report of pospiviroids infecting ornamentals in the Netherlands: Citrus exocortis viroid in Verbena sp., Potato spindle tuber viroid in Brugmansia suaveolens and Solanum jasminoides, and Tomato apical stunt viroid in Cestrum sp. Plant Pathology, 57, 399.

    Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Roenhorst, J. W., Steyer, S., Schwind, N., & Wassenegger, M. (2008b). First report of Solanum jasminoides infected by Citrus exocortis viroid in Germany and the Netherlands and Tomato apical stunt viroid in Belgium and Germany. Plant Disease, 92(6), 973–973.

    Article  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Roenhorst, J. W., Flores, R., & De la Pena, M. (2009). Pepper chat fruit viroid: biological and molecular properties of a proposed new species of the genus pospiviroid. Virus Research, 144, 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Botermans, M., & Roenhorst, J. W. (2010). Epidemiological evidence that vegetatively propagated, solanaceous plant species act as sources of Potato spindle tuber viroid inoculum for tomato. Plant Pathology, 59, 3–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), the Walloon Agricultural Research Centre (CRA-W), the Special Research Fund of Ghent University and the Fund for Scientific Research-Flanders (FWO-Vlaanderen). We thank Thibaut Olivier and Stephan Steyer for their help during the national project “TOPOVIR” (Transmission of pospiviroids”) during which several isolates of this study were identified. We thank all people involved from the Belgian NPPO (FASFC) for their assistance. Finally, we are indebted to Steve Baeyen (ILVO) for his help with phylogenetic tree-editing in MEGA7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noémi Van Bogaert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Bogaert, N., Smagghe, G., Maes, M. et al. Phylogeny of five predominant pospiviroid species in Belgium. Eur J Plant Pathol 149, 25–33 (2017). https://doi.org/10.1007/s10658-017-1158-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1158-0

Keywords

Navigation