Skip to main content
Log in

High stability of original predominant pospiviroid genotypes upon mechanical inoculation from ornamentals to potato and tomato

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Eleven pospiviroid isolates from ornamental plants and one from pepper were successfully transmitted to potato and tomato by mechanical inoculation. All isolates with characteristic predominant genotypes were inoculated to a series of potato and tomato plants and propagated for up to four passages. In total, 385 nucleotide sequences were determined, in which 17 new predominant genotypes were identified with minimal differences to the original predominant genotype. In addition, in the original ornamental hosts, only one of eleven predominant pospiviroid genotypes had changed during the experiments over a period of 2 years. These results confirm the high stability of predominant pospiviroid genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ambros S, Hernandez C, Desvignes J, Flores R (1998) Genomic structure of three phenotypically different isolates of peach latent mosaic viroid: implications of the existence of constraints limiting the heterogeneity of viroid quasispecies. J Virol 72:7397–7406

    CAS  PubMed  Google Scholar 

  2. Codoñer FM, Daròs JA, Solé RV, Elena SF (2006) The fittest versus the flattest: experimental confirmation of the quasispecies effect with subviral pathogens. PloS Pathog 2(12):e136. doi:10.1371/journal.ppat.0020136

    Article  PubMed  Google Scholar 

  3. De La Peña M, Navarro B, Flores R (1999) Mapping the molecular determinant of pathogenicity in a hammerhead viroid: a tetraloop within the in vivo branched RNA conformation. Proc Natl Acad Sci USA 96:9960–9965

    Article  PubMed  Google Scholar 

  4. Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Ann Rev Microbiol 51:151–178

    Article  CAS  Google Scholar 

  5. Eigen M, Biebricher CK (1988) Sequence space and quasispecies distribution. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA Genetics, vol 3. CRC Press, Boca Raton, pp 211–245

    Google Scholar 

  6. Elena SF, Sanjuán R (2007) Virus evolution: insights from an experimental approach. Annu Rev Ecol Evol Syst 38:27–52

    Article  Google Scholar 

  7. Gago S, Elena SF, Flores R, Sanjuán R (2009) Extremely high variability of a hammerhead viroid. Science 323:1308. doi:10.1126/science.1169202

    Article  CAS  PubMed  Google Scholar 

  8. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, Vande Pol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585

    Article  CAS  PubMed  Google Scholar 

  9. Keese P, Visvader JE, Symons RH (1988) Sequence variability in plant viroid RNAs. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA Genetics, vol 3. CRC Press, Boca Raton, pp 71–98

    Google Scholar 

  10. Martínez-Soriano JP, Galindo-Alonso J, Maroon CJM, Yucel I, Smith DR, Diener TO (1996) Mexican papita viroid: putative ancestor of crop viroids. Proc Natl Acad Sci USA 93:9397–9401

    Article  PubMed  Google Scholar 

  11. Önelge N (1997) Direct nucleotide sequencing of citrus exocortis viroid (CEV). Turk J Agric For 21:419–422

    Google Scholar 

  12. Owens RA (2008) Viroids. In: Roossinck MJ (ed) Plant virus evolution. Springer, Berlin, pp 83–108

    Chapter  Google Scholar 

  13. Owens RA, Girsova NV, Kromina KA, Lee IM, Mozhaeva KA, Kastalyeva T (2009) Russian isolates of Potato spindle tuber viroid exhibit low sequence diversity. Plant Dis 93:752–759

    Article  CAS  Google Scholar 

  14. Shamloul AM, Hadidi A, Zhu SF, Singh RP, Sagredo B (1997) Sensitive detection of potato spindle tuber viroid using RT-PCR and identification of a viroid variant naturally infecting pepino plants. Can J Plant Pathol 19:89–96

    Google Scholar 

  15. Sanjuán R, Forment J, Elena SF (2006) In silico predicted robustness of viroid RNA secondary structure. I. The effect of single mutations. Mol Biol Evol 23:1427–1436

    Article  PubMed  Google Scholar 

  16. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  17. Van Wezenbeek P, Vos P, Van Boom J, Van Kammen A (1982) Molecular cloning and characterization of a complete DNA copy of potato spindle tuber viroid RNA. Nucleic Acids Res 10:7947–7957

    Article  PubMed  Google Scholar 

  18. Verhoeven JThJ, Roenhorst JW (2000) Herbaceous test plants for the detection of quarantine viruses of potato. Bull OEPP/EPPO Bull 30:463–467

    Google Scholar 

  19. Verhoeven JThJ, Jansen CCC, Willemen TM, Kox LFF, Owens RA, Roenhorst JW (2004) Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. Eur J Plant Pathol 110:823–831

    Article  CAS  Google Scholar 

  20. Verhoeven JThJ, Jansen CCC, Roenhorst JW (2008) First report of pospiviroids infecting ornamentals in the Netherlands: Citrus exocortis viroid in Verbena sp., Potato spindle tuber viroid in Brugmansia suaveolens and Solanum jasminoides, and Tomato apical stunt viroid in Cestrum sp. Plant Pathol 57:399

    Google Scholar 

  21. Verhoeven JThJ, Jansen CCC, Roenhorst JW (2008) Streptosolen jamesonii ‘Yellow’, a new host plant of Potato spindle tuber viroid. Plant Pathol 57:399

    Google Scholar 

  22. Verhoeven JThJ, Jansen CCC, Roenhorst JW, Steyer S, Schwind N, Wassenegger M (2008) First report of Solanum jasminoides infected by Citrus exocortis viroid in Germany and the Netherlands and Tomato apical stunt viroid in Belgium and Germany. Plant Dis 92:973

    Article  Google Scholar 

  23. Verhoeven JThJ, Jansen CCC, Botermans M, Roenhorst JW (2009) Epidemiological evidence that vegetatively propagated, solanaceous plant species act as sources of Potato spindle tuber viroid inoculum for tomato. Plant Pathol. doi:10.1111/j.1365-3059.2009.02173.x

  24. Verhoeven JThJ, Jansen CCC, Roenhorst JW, Flores R, De la Peña M (2009) Pepper chat fruit viroid: biological and molecular properties of a proposed new species of the genus Pospiviroid. Virus Res 144:209–214. doi:10.1016/j.virusres.2009.05.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleagues of the department National Reference Laboratory of the Netherlands Plant Protection Service for performing the tests and Ricardo Flores for critically reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Th. J. Verhoeven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhoeven, J.T.J., Roenhorst, J.W. High stability of original predominant pospiviroid genotypes upon mechanical inoculation from ornamentals to potato and tomato. Arch Virol 155, 269–274 (2010). https://doi.org/10.1007/s00705-009-0572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0572-9

Keywords

Navigation