Skip to main content
Log in

Development of a comprehensive detection and identification molecular based system for eight pospiviroids

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Pospiviroids cause serious economic damage to solanaceous crops, including tomato (Solanum lycopersicum), and cause symptomless infections in many horticultural plants. Symptomless infection and seed transmission are obstacles in visual inspection for plant quarantine. Therefore, in the present study, a comprehensive detection and identification system for molecular diagnosis of eight pospiviroids was developed, based on real-time reverse transcription polymerase chain reaction (RT-PCR). In this system, two real-time RT-PCR methods based on SYBR Green and TaqMan technologies were combined. First, tomato seed samples were screened for all the eight pospiviroids by the SYBR Green method using three primer pairs, including one pair of universal primers. Samples that were positive using the universal primer set were subjected to secondary screening for the identification to species level of six viroids by TaqMan real-time RT-PCR method, with specific primer and probe sets. This two-phase system could specifically detect a viroid in a sample of 400 seeds containing a single contaminated seed. The developed system could be an effective and simple tool to avoid the introduction of pospiviroids through tomato seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antignus, Y., Lachman, O., & Pearlsman, M. (2007). Spread of Tomato apical stunt viroid (TASVd) in greenhouse tomato crops is associated with seed transmission and bumble bee activity. Plant Disease, 91(1), 47–50.

    Article  CAS  Google Scholar 

  • Behjatnia, S. A. A., Dry, I. B., Krake, L. R., Condé, B. D., Connelly, M. I., & Randles, J. W. (1996). New Potato spindle tuber viroid and Tomato leaf curl geminivirus strains from a wild Solanum sp. Phytopathology, 86(8), 880–886.

    Article  CAS  Google Scholar 

  • Boonham, N., Gonzáles, P. L., Mendez, M. S., Lilia, P. E., Blockly, A., Walsh, K., Barker, I., & Mumford, R. A. (2004). Development of a real-time RT-PCR assay for the detection of Potato spindle tuber viroid. Journal of Virological Methods, 116(2), 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Bostan, H., Nie, X., & Singh, R. P. (2004). An RT-PCR primer pair for the detection of pospiviroid and its application in surveying ornamental plants for viroids. Journal of Virological Methods, 116(2), 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Botermans, M., van de Voseenberg, B. T., Verhoeven, J. T., Roenhorst, J. W., Hooftman, M., & Dekter, R. (2013). Development and validation of a real-time RT-PCR assay for generic detection of pospiviroids. Journal of Virological Methods, 187(1), 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Brunschot, S. L., Verhoeven, J. T. J., Persley, D. M., Geering, A. D. W., Drenth, A., & Thomas, J. E. (2014). An outbreak of Potato spindle tuber viroid in tomato is linked to imported seed. European Journal of Plant Pathology, 139(1), 1–7.

    Article  Google Scholar 

  • Chambers, G. A., Seyb, A. M., Mackie, J., Constable, F. E., Rodoni, B. C., & Letham, D. (2013). First report of Pepper chat fruit viroid in traded tomato seed, an interception by Australian biosecurity. Plant Disease, 97(10), 1386.

    Article  Google Scholar 

  • Flores, R., Gas, M. E. G., Molina-Serrano, D., Nohales, M. A., Carbonell, A., & Gago, S. (2009). Viroid replication: rolling-circles, enzymes and ribozymes. Viruses, 1(2), 317–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadidi, A., Flores, R., Randles, J. W., & Semancik, J. S. (Eds.). (2003). Viroids. Collingwood: CSIRO.

    Google Scholar 

  • Hoshino, S., Okuta, T., Isaka, M., Tsutsumi, N., Miyai, N., Ikeshiro, T., Saito, N., Ohara, T., & Takahashi, T. (2006). Detection of Potato spindle tuber viroid (PSTVd) in tomato and potato seeds. Research bulletin of the Plant Protection Service Japan, 42, 75–79.

    Google Scholar 

  • Kryczynski, S., Paduch-Cichal, E., & Skrzeczkowski, L. J. (1988). Transmission of three viroids through seed and pollen of tomato plants. Journal of Phytopathology, 121(1), 51–57.

    Article  Google Scholar 

  • Mano, J., Shigemitsu, N., Futo, S., Akiyama, H., Teshima, R., & Hino, A. (2009). Real-time PCR array as a universal platform for the detection of genetically modified crops and its application in identifying unapproved genetically modified crops in Japan. Journal of Agricultural and Food Chemistry, 57(1), 26–37.

    Article  CAS  PubMed  Google Scholar 

  • Matsushita, Y., & Tsuda, S. (2014). Distribution of Potato spindle tuber viroid in reproductive organs of petunia during its developmental stages. Phytopathology, 104(9), 964–969.

    Article  PubMed  Google Scholar 

  • Matsushita, Y., & Tsuda, S. (2016). Seed transmission of potato spindle tuber viroid, tomato chlorotic dwarf viroid, tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. European Journal of Plant Pathology. doi:10.1007/s10658-016-0868-z.

    Google Scholar 

  • Matsushita, Y., Usugi, T., & Tsuda, S. (2011). Distribution of tomato chlorotic dwarf viroid in floral organs of tomato. European Journal of Plant Pathology, 130(4), 441–447.

    Article  Google Scholar 

  • Monger, W., Tomlinson, J., Booonham, N., Marn, M. V., Plesko, I. M., & Molinero-Demilly, V. (2010). Development and inter-laboratory evaluation of real-time PCR assays for the detection of pospiviroids. Journal of Virological Methods, 169(1), 207–210.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. P., Dilworth, A. D., Ao, X., Singh, M., & Baranwal, V. K. (2009). Citrus exocortis viroid transmission through commercially-distributed seeds of Impatiens and Verbena plants. European Journal of Plant Pathology, 124(4), 691–694.

    Article  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110(8), 823–831.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C., Roenhorst, J. W., Flores, R., & de la Peña, M. (2009). Pepper chat fruit viroid: biological and molecular properties of a proposed new species of the genus pospiviroid. Virus Research, 144(1), 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven, J. T. J., Roenhorst, J. W., & Owens, R. A. (2011). Mexican papita viroid and tomato planta macho viroid belong to a single species in the genus pospiviroid. Archives of Virology, 156(8), 1433–1437.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for “Regulatory research projects for food safety, animal health and plant protection” and “Development of detection and identification techniques of pests in research and development for global warming adaptation and abnormal weather correspondence” from the Ministry of Agriculture, Forestry, and Fisheries of Japan. We also thank J. Th. J. Verhoeven (Naktuinbouw, The Netherlands) and K. Reanwarakorn (Kasetsart University, Thailand) for supplying the viroid infected materials. We thank Y. Matsumura, Y. Narita, and J. Sato for preparing the experimental materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Tsuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanagisawa, H., Shiki, Y., Matsushita, Y. et al. Development of a comprehensive detection and identification molecular based system for eight pospiviroids. Eur J Plant Pathol 149, 11–23 (2017). https://doi.org/10.1007/s10658-017-1157-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1157-1

Keywords

Navigation