Skip to main content
Log in

Distribution of tomato chlorotic dwarf viroid in floral organs of tomato

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In situ hybridization was used to analyze the distribution pattern of Tomato chlorotic dwarf viroid (TCDVd) in floral organs of tomato plants. Following TCDVd invasion of floral organs, it became localized only in sepals at an early developmental stage, then reached other floral organs at the flower opening stage, with the exception of part of the placenta and ovules. When distribution of TCDVd was compared with that of Potato spindle tuber viroid (PSTVd), TCDVd was not detected in the outer integument around the embryo sac even though PSTVd was able to invade there, suggesting that such specific distribution might reflect the frequent occurrence of viroid disease on crops caused by PSTVd-seed transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Allen, R. N., Palukaitis, P., & Symons, R. H. (1981). Purified avocado sunblotch viroid causes disease in avocado seedlings. Australasian Plant Pathology, 10, 31–32.

    Article  Google Scholar 

  • Antignus, Y., Lachman, O., & Pearlsman, M. (2007). Spread of tomato apical stunt viroid (TASVd) in greenhouse tomato crops is associated with seed transmission and bumble bee activity. Plant Disease, 91, 47–50.

    Article  CAS  Google Scholar 

  • Benson, A. P., & Singh, R. P. (1964). Seed transmission of potato spindle tuber virus in tomato. American Potato Journal, 41, 294.

    Google Scholar 

  • Brukhin, V., Hernould, M., Gonzalez, N., Chevalier, C., & Mouras, A. (2003). Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sexual Plant Reproduction, 15, 311–320.

    Google Scholar 

  • Chung, B. N., & Pak, H. S. (2008). Seed transmission of Chrysanthemum stunt viroid in chrysanthemum (Dendranthema grandiflorum) in Korea. Plant Pathology Journal, 23, 334–338.

    Google Scholar 

  • Di Serio, F., & Flores, R. (2008). Viroids: Molecular implements for dissecting RNA trafficking in plants. RNA Biology, 5, 128–131.

    Article  PubMed  Google Scholar 

  • Di Serio, F., De Alba, M. A.-E., Navarro, B., Gisel, A., & Flores, R. (2010). RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. Journal of Virology, 84, 2477–2489.

    Article  PubMed  Google Scholar 

  • Diener, T. O. (1972). Potato spindle tuber viroid. VIII. Correlation of infectivity with a UV-absorbing component and thermal denaturation properties of the RNA. Virology, 50, 606–609.

    Article  PubMed  CAS  Google Scholar 

  • Ding, B. (2009). The biology of viroid-host interactions. Annual Review of Phytopathology, 47, 105–131.

    Article  PubMed  CAS  Google Scholar 

  • Ding, B., Kwon, M. O., Hammond, R., & Owens, R. (1996). Cell-to-cell movement of potato spindle tuber viroid. The Plant Journal, 12, 931–936.

    Article  Google Scholar 

  • Duran-Vila, N., & Semancik, J. S. (2003). Citrus viroid. In A. Hadidi, R. Flores, J. W. Randles, & J. S. Semancik (Eds.), Viroids (pp. 178–194). Melbourne: CSIRO.

    Google Scholar 

  • Fernow, K. H., Peterson, L. C., & Plaisted, R. L. (1970). Spindle tuber virus in seeds a infected plants. American Potato Journal, 47, 75–80.

    Article  Google Scholar 

  • Hadidi, A., Hansen, A. J., Parish, C. L., & Yang, X. (1991). Scar skin and dapple apple viroids are seed-borne and persistent in infected apple trees. Research in Virology, 142, 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, D. E., Darling, H. M., & Beale, W. L. (1969). Seed transmission of potato spindle tuber virus. American Potato Journal, 46, 247–250.

    Article  Google Scholar 

  • James, T., Mulholland, V., Jeffries, C., & Chard, J. (2008). First report of tomato chlorotic dwarf viroid infecting commercial petunia stocks in the United Kingdom. Plant Pathology, 57, 400.

    Article  Google Scholar 

  • Kryczynski, S., Paduch-Cichal, E., & Skrzeczkowski, L. J. (1988). Transmission of three viroids through seed and pollen of tomato plants. Journal of Phytopathology, 121, 51–57.

    Article  Google Scholar 

  • Matsushita, Y., & Kumar, P. K. R. (2009). In vitro transcribed Chrysanthemum stunt viroid (CSVd) RNA is infectious to Chrysanthemum and other plants. Phytopathology, 99, 58–66.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita, Y., Kanda, A., Usugi, T., & Tsuda, S. (2008). First report of a tomato chlorotic dwarf viroid disease on tomato plants in Japan. Journal of General Plant Pathology, 74, 182–184.

    Article  CAS  Google Scholar 

  • Matsushita, Y., Usugi, T., & Tsuda, S. (2009). Host range and properties of tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 124, 349–352.

    Article  Google Scholar 

  • Matsushita, Y., Usugi, T., & Tsuda, S. (2010). Development of a multiplex RT-PCR detection and identification system for potato spindle tuber viroid and tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 128, 419–420.

    Article  Google Scholar 

  • Matsuura, S., Matsushita, Y., Kozuka, R., Shimizu, S., & Tsuda, S. (2010). Transmission of tomato chlorotic dwarf viroid by bumblebees (Bombus ignitus) in tomato plants. European Journal of Plant Pathology, 126, 111–115.

    Article  Google Scholar 

  • Owens, R. A., Hammond, R. W., Gardner, R. C., Kiefer, M. C., Thompson, S. M., & Cress, D. E. (1986). Site-specific mutagenesis of potato spindle tuber viroid cDNA. Plant Molecular Biology, 6, 179–192.

    Article  CAS  Google Scholar 

  • Qi, Y., Pelissier, T., Itaya, A., Hunt, E., Wassenegger, M., & Ding, B. (2004). Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. The Plant Cell, 16, 1741–1752.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, I. M., Wang, D., Thomas, C. L., & Maule, A. J. (2003). Pea seed-borne mosaic virus seed transmission exploits novel symplastic pathways to infect the pea embryo and is, in part, dependent upon chance. Protoplasma, 222, 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Sainte-Marie, G. (1962). A paraffin embedding technique for studies employing immunofluorescence. The Journal of Histochemistry and Cytochemistry, 10, 250–256.

    Article  Google Scholar 

  • Singh, R. P. (1970). Seed transmission of potato spindle tuber virus in tomato and potato. American Potato Journal, 47, 225–227.

    Article  Google Scholar 

  • Singh, R. P. (2006). Reassessment of the presence of viroid species of the genus Pospiviroid in infected floral parts, using reverse transcription-polymerase chain reaction and infectivity assays. Canadian Journal of Plant Pathology, 28, 242–249.

    Article  CAS  Google Scholar 

  • Singh, R. P., & Dilworth, A. D. (2009). Tomato chlorotic dwarf viroid in the ornamental plant Vinca minor and its transmission through tomato seed. European Journal of Plant Pathology, 123, 111–116.

    Article  Google Scholar 

  • Singh, R. P., Boucher, A., & Singh, A. (1991). High incidence of transmission and occurrence of a viroid in commercial of seeds of Coleus in Canada. Journal of Plant Pathology, 13, 202–211.

    CAS  Google Scholar 

  • Singh, R. P., Nie, X., & Singh, M. (1999). Tomato chlorotic dwarf viroid: an evolutionary link in the origin of pospiviroids. The Journal of General Virology, 80, 2823–2828.

    PubMed  CAS  Google Scholar 

  • Singh, R. P., Dilworth, A. D., Ao, X., Singh, M., & Baranwal, V. K. (2009). Citrus exocortis viroid transmission through commercially-distributed seeds of impatiens and Verbena plants. European Journal of Plant Pathology, 124, 691–694.

    Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., & Willemen, T. M. (2004). Natural infections of tomato by citrus exocortis viroid, columnea latent viroid, potato spindle tuber viroid and tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110, 823–831.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., & Willemen, T. M. (2007). First report of tomato chlorotic dwarf viroid in Petunia hybrida from the United States of America. Plant Disease, 91, 324.

    Article  Google Scholar 

  • Verhoeven, J. T. J., Botermans, M., Roenhorst, J. W., Westerhof, J., & Meekes, E. T. M. (2009). First report of potato spindle tuber viroid in Cape Gooseberry (Physalis peruviana) from Turkey and Germany. Plant Disease, 93, 316.

    Article  Google Scholar 

  • Wah, Y. F. W. C., & Symons, R. H. (1999). Transmission of viroids via grape seed. Journal of Phytopathology, 147, 285–291.

    Google Scholar 

  • Wallace, J. M., & Drake, R. J. (1962). A high rate of seed transmission of avocado sun-blotch virus from symptomless trees and the origin of sun trees. Phytopathology, 52, 237–241.

    Google Scholar 

  • Zhong, X., Archuala, J. A., Amina, A. A., & Ding, B. (2008). A genomic map of Viroid RNA motifs critical for replication and systemic trafficking. The Plant Cell, 20, 35–47.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Green, L., Woo, Y.-M., Owens, R. A., & Ding, B. (2001). Cellular basis of potato spindle tuber viroid systemic movement. Virology, 279, 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Qi, Y., Xun, Y., Owens, R., & Ding, B. (2002). Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. Plant Physiology, 130, 138–146.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Sano and S. Matsuura for effectual and useful comments to this study. We thank Y. Matsumura and S. Nagai for the maintenance of the plants. This study was supported, in part, by a Grant-in-Aid from The Research Project for Utilizing Advanced Technologies in Agriculture, Forestry and Fisheries, administered by the Ministry of Agriculture, Forestry and Fisheries in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Tsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushita, Y., Usugi, T. & Tsuda, S. Distribution of tomato chlorotic dwarf viroid in floral organs of tomato. Eur J Plant Pathol 130, 441–447 (2011). https://doi.org/10.1007/s10658-011-9766-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9766-6

Keywords

Navigation