Skip to main content
Log in

Identification of genes differentially expressed in Pinus pinaster and Pinus pinea after infection with the pine wood nematode

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare the response to infestation by the pine wood nematode (PWN) Bursaphelenchus xylophilus between Pinus pinaster and P. pinea at an initial stage of the disease, 3 h after inoculation. The PWN is the causal agent of pine wilt disease and is destroying pine forests all over the world. In Portugal its main host is the maritime pine, P. pinaster, and its vector is the longhorn beetle Monochamus galloprovincialis. Interestingly, this disease does not seem to affect the species P. pinea and several factors could be behind this difference in susceptibility. With regards to the effects of the disease at a transcriptional level, the suppression subtractive hybridization (SSH) technique was utilized to identify Expressed Sequence Tags (EST) in P. pinaster and P. pinea when inoculated with PWN. EST were isolated, cloned, sequenced and identified using BlastN and BlastX, and indicated that at an initial stage of the disease there is activation of a tree defence response at a molecular level, mainly related to oxidative stress, production of lignin and ethylene and post-transcriptional regulation of nucleic acids. 58% of the isolated sequences are not yet described, which shows the lack of genomic information currently available for pine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

(EST):

Expressed sequenced tags

(hai):

Hours after inoculation

(HR):

Hypersensitive response

(PWN):

Pine wood nematode

(PWD):

Pine wilt disease

(SSH):

Subtractive suppression hybridization

References

  • Afzal, A. J., Wood, A. J., & Lightfoot, D. A. (2008). Plant receptor-like serine threonine-kinases: roles in signaling and plant defence. MPMI, 21, 507–517.

    Article  PubMed  CAS  Google Scholar 

  • Baermann, G. (1917). Eine einfache Methode zur Auffindung von Ankylostomum (nematoden) Larven in Erdproben. Geneesk Tijdschr Ned-Indie, 57, 131–137.

    Google Scholar 

  • Baldo, A., Norelli, J. L., Farrell, R., Jr., Basset, C. L., Aldwinckle, H. S., & Malnoy, M. (2010). Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus x domestica) with Erwinia amylovora. BMC Plant Biology, 10. doi:10.1186/1471-2229-10-1.

  • Bischoff, V., Nita, S., Neumetzler, L., Schindelasch, D., Urbain, A., Eshed, R., et al. (2010). Trichome birefringence and its homolog At5g01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis thaliana. Plant Physiology, 153(2), 590–602. doi:10.1104/pp.110.153320.

    Article  PubMed  CAS  Google Scholar 

  • Boengler, K., Pipp, F., Schaper, W., & Deindl, E. (2003). Rapid Identification of Differentially Expressed Genes by Combination of SSH and MOS. Laboratory Investigation, 83(5), 759. doi:10.1097/01.LAB.0000069520.16101.73.

    PubMed  Google Scholar 

  • Bray, E. A. (2002). Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Annals of Botany, 89, 803–811.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-Microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803–814.

    Article  PubMed  CAS  Google Scholar 

  • Diatchenko, L., Lau, Y.-F., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., et al. (1996). Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 93, 6025–6030.

    Article  PubMed  CAS  Google Scholar 

  • Dryková, D., Cenklová, V., Sulimenko, V., Volc, J., Dráber, P., & Binarová, P. (2003). Plant γ-tubulin interacts with αβ-tubulin dimers and forms membrane-associated complexes. The Plant Cell, 15, 465–480.

    Article  PubMed  Google Scholar 

  • Eckard, N. A. (2004). Inside the matrix: crystal structure of a xyloglucan endotransferase. The Plant Cell, 16, 792–793.

    Article  Google Scholar 

  • Ecker, J. R., & Davis, R. W. (1987). Plant defence genes are regulated by ethylene. Proc Natl Acad Sci USA, 84, 5202–5206.

    Article  PubMed  CAS  Google Scholar 

  • Elling, A. A., Davis, E. L., Hussey, R. S., & Baum, T. J. (2007). Active uptake of cyst nematode parasitism proteins into the plant cell nucleus. Int J Parasitol, 37, 1269–1279.

    Article  PubMed  CAS  Google Scholar 

  • Evans, S., Evans, H., & Ikegami, M. (2008). Modelling PWN-Induced Wilt Expression: A Mechanistic Approach. In M. M. Mota & P. Vieira (Eds.), Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems (pp. 259–278). Netherlands: Springer.

    Chapter  Google Scholar 

  • Fry, S. C., Aldington, S., Hetherington, P. R., & Aitken, J. (1993). Oligosaccharides as signal and substrates in the plant cell wall. Plant Physiology, 103, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, K. (1997). Physiological process of the symptom development and resistance mechanism in pine wilt disease. Journal of Forest Research, 2, 171–181.

    Article  Google Scholar 

  • Futai, K., & Furuno, T. (1979). The variety of resistances among pine species to pine wood nematode, Bursaphelenchus lignicolus. Bull Kyoto Uni For, 51, 23–36.

    Google Scholar 

  • González-Martínez, S. C., Wheeler, N. C., Ersoz, E., Nelson, C. D., & Neale, D. B. (2007). Association genetics in Pinus taeda L. I. wood property traits. Genetics, 175, 399–409.

    Article  PubMed  Google Scholar 

  • Hein, I., Campbell, E. I., Woodhead, M., Hedley, P., Young, V., Morris, W. L., et al. (2004). Characterisation of early transcriptional changes involving multiple signalling pathways in the Mla13 barley interaction with powdery mildew (Blumeria graminis f sp hordei). Planta, 218, 803–813.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, K. M., & Weaver, L. M. (1999). The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol, 50, 473–503.

    Article  PubMed  CAS  Google Scholar 

  • Hochachka, P. W., Buck, L. T., Doll, C. J., & Land, S. C. (1996). Unifying theory of hypoxia tolerance: molecular/metabolic defence and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA, 93, 9493–9498.

    Article  PubMed  CAS  Google Scholar 

  • Hu, P., Meng, Y., & Wise, R. P. (2009). Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley-powdery mildew interactions. MPMI, 22, 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Jacquot, J.-P., Lancelin, J.-M., & Meyer, Y. (1997). Thioredoxins: structure and function in plant cells. New Phytologist, 136, 543–570.

    Article  CAS  Google Scholar 

  • Kispal, G., Csere, P., Prohl, C., & Lill, R. (1999). The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. The EMBO Journal, 18, 3981–3989.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, F., Yamane, A., & Ikeda, T. (1984). The Japanese pine sawyer beetle as the vector of pine wilt disease. Ann Rev Entomol, 29, 115–135.

    Article  Google Scholar 

  • Kuroda, K. (2008). Host responses and wilting mechanisms. In B. G. Zhao, K. Futai, J. R. Sutherland, & Y. Takeuchi (Eds.), Pine wilt disease (pp. 202–222). Netherlands: Springer.

    Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods, 25(4), 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Mach, J. (2008). Basal defence in Arabidopsis: WRKYs Interact with histone deacetylase HDA19. The Plant Cell, 20, 2282.

    Article  CAS  Google Scholar 

  • Mauch-Mani, B., & Slusarenko, A. J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. The Plant Cell, 8, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Mota, M. M., Braasch, H., Bravo, M. A., Penas, A. C., Burgermeister, W., Metge, K., et al. (1999). First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology, 1, 727–734.

    Article  Google Scholar 

  • Myers, R. F. (1988). Pathogenesis in Pine Wilt caused by Pinewood Nematode, Bursaphelenchus xylophilus. Journal of Nematology, 20, 236–244.

    PubMed  CAS  Google Scholar 

  • Peleman, J., Boerjan, W., Engler, G., Seurinck, J., Botterman, J., Alliotte, T., et al. (1989). Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-Adenosylmethionine Synthetase. The Plant Cell, 1, 81–93.

    Article  PubMed  CAS  Google Scholar 

  • Provost, G., Herrera, R., Paiva, J., Chaumeil, P., Salin, F., & Plomion, C. (2007). A micromethod for high throughput RNA extraction in forest trees. Biological Research, 40, 291–297.

    PubMed  Google Scholar 

  • Ralph, S. G., Chun, H. J. E., Kolosova, N., Cooper, D., Oddy, C., Ritland, C. E., et al. (2008). A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics, 9, 484.

    Article  PubMed  Google Scholar 

  • Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defence pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1–14.

    Article  Google Scholar 

  • Scharf, J. M., Endrizzi, M. G., Wetter, A., Huang, S., Thompson, T. G., Zerres, K., et al. (1998). Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nature Genetics, 20, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Schiffer, R., Gorg, R., Jarosch, B., Beckhove, U., Bahrenberg, G., Kogel, K.-H., et al. (1997). Tissue Dependence and Differential Cordycepin Sensitivity of Race-Specific Resistance Responses in the Barley-Powdery Mildew Interaction. MPMI, 10, 830–839.

    Article  CAS  Google Scholar 

  • Séraphin, B. (1995). Sm and Sm-like proteins belong to a large family: identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs. The EMBO Journal, 14, 2089–2098.

    PubMed  Google Scholar 

  • Shin, H., Lee, H., Woo, K.-S., Noh, E.-W., Koo, Y.-B., & Lee, K.-J. (2009). Identification of genes upregulated by pinewood nematode inoculation in Japanese red pine. Tree Physiology, 29, 411–421.

    Article  PubMed  CAS  Google Scholar 

  • Stenberg, K., & Lindqvist, Y. (1997). Three-dimensional structures of glycolate oxidase with bound active-site inhibitors. Protein Science, 6, 1009–1015.

    Article  PubMed  CAS  Google Scholar 

  • Tan, J.-J., Ye, J.-R., Wu, X.-Q., Zhu, Y.-F., & Li, Y. (2005). A study on disease development and early diagnosis of pine wood nematode, Bursaphenchus xylophilus, infection of Japanese black pine. Nematology, 7, 481–485.

    Article  Google Scholar 

  • Thordal-Christensen, H. (2003). Fresh insights into processes of non-host resistance. Current Opinion in Plant Biology, 6, 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Torres-Schumann, S., Godoy, J. A., & Pintor-Toro, J. A. (1992). A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Molecular Biology, 18, 749–757.

    Article  PubMed  CAS  Google Scholar 

  • Verica, J. A., Maximova, S. N., Strem, M. D., Carlson, J. E., Bailey, B. A., & Guiltinan, M. J. (2004). Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defence response. Plant Cell Reports, 23, 404–413.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A., Ralph, J., Akiyama, T., Flint, H., Phillips, L., Torr, K., et al. (2007). Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase in Pinus radiata. PNAS, 104, 11856–11861.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Wang, B., Liu, L., Cui, X., Yang, J., Wango, H., et al. (2010). Isolation of high quality RNA and construction of a suppression subtractive hybridization library from ramie (Boehmeria nivea L. Gaud.). Molecular Biology Reports, 37, 2099–2103.

    Article  PubMed  CAS  Google Scholar 

  • Yabe, T., Morimoto, K., Kikuchi, S., Nishio, K., Terashima, I., & Nakai, M. (2004). The Arabidopsis chloroplastic NifU-Like Protein CnfU, which can act as an iron-sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I. The Plant Cell, 16, 993–1007.

    Article  PubMed  CAS  Google Scholar 

  • Yan, D., Zhang, Y., Niu, L., Yuan, Y., & Cao, X. (2007). Identification and characterization of two closely related histone H4 arginine 3 methyltransferases in Arabidopsis thaliana. Biochemical Journal, 408, 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Zucko, J., Dunlap, W. C., Shick, J. M., Cullum, J., Cercelet, F., Amin, B., et al. (2010). Global genome analysis of the shikimic acid pathway reveals greater gene loss in host-associated than in free-living bacteria. BMC Genomics, 11, 628.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Forest Authority, Agriculture Ministry, and Rural and Fisheries Development. The authors would like to thank Dr. Manuel Mota and Dr. Pedro Barbosa for providing the nematode strain HF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Wilton de Vasconcelos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, C.S.S., de Vasconcelos, M.W. Identification of genes differentially expressed in Pinus pinaster and Pinus pinea after infection with the pine wood nematode. Eur J Plant Pathol 132, 407–418 (2012). https://doi.org/10.1007/s10658-011-9886-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9886-z

Keywords

Navigation