Skip to main content
Log in

Response of Scots pine (Pinus sylvestris) seedlings subjected to artificial infection with the fungus Sphaeropsis sapinea

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The ascomycete Sphaeropsis sapinea (syn. Diplodia pinea), the causal agent of Diplodia blight of pine, is also known to be an endophyte with a latent pathogenic potential on pine trees. Due to climate change effects, especially warming and more prolonged or frequent drought events, the hosts are weakened and S. sapinea could become more aggressive in the future. Normally, pines which are 25 years old or older are more susceptible to the disease as compared with younger trees. However, if younger trees are growing on poor sites or are located close to affected trees, they may also become infected. Here, we analyzed the interaction of young pine seedlings (4 years old) with the fungus in vitro, in order to examine the changes in gene activity for example of genes encoding metabolites and therewith contributing to an induced resistance against the fungus. During different stages of infection (control without infection and 14 days after infection), pine needles of four samples per stage (eight samples all together) were collected and analyzed by mRNA sequencing. The comparison between the two stages showed that, nearly independent of the genotype of the plant, 5691 genes were differentially expressed. In the severe stage of infection, elevated transcript levels of genes involved in lignin- and phytoalexin-biosynthesis and of pathogenesis-related genes were found. Furthermore, some of these genes were also validated in a natural population of Pinus sylvestris by reverse transcriptase (RT)-PCR in order to analyze induced defense responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamson K, Klavina D, Drenkhan R, Gaitnieks T, Hanso M (2015) Diplodia sapinea is colonizing the native Scots pine (Pinus sylvestris) in the northern Baltics. Eur J Plant Pathol 143:343–350

    Article  Google Scholar 

  • Alexa A, Rahnenführer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22:1600–1607

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2014) FastQC A quality control tool for high throughput sequence data. https://github.com/s-andrews/FastQC

  • Bihon W, Slippers B, Burgess T, Wingfield MJ, Wingfield BD (2011) Diplodia scrobiculata found in the southern hemisphere. For Pathol 41:175–181

    Article  Google Scholar 

  • Blodgett JT, Bonello P (2003) The aggressiveness of Sphaeropsis sapinea on Austrian pine varies with isolate group and site of infection. For Pathol 33:15–19

    Article  Google Scholar 

  • Bosso L, Luchi N, Maresi G, Cristinzio G, Smeraldo S, Russo D (2017) Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest management planning. For Ecol Manag 400:655–664

    Article  Google Scholar 

  • Breen S, Williams SJ, Outram M, Kobe B, Solomon PS (2017) Emerging insights into the functions of pathogenesis- related protein 1. Trends Plant Sci 22:871–879

    Article  CAS  PubMed  Google Scholar 

  • Bußkamp J (2018) Schadenserhebung, Kartierung und Charakterisierung des, Diplodia- Triebsterbens“ der Kiefer, insbesondere des endophytischen Vorkommens in den klimasensiblen Räumen und Identifikation von den in Kiefer (Pinus sylvestris) vorkommenden Endophyten. (PhD thesis), Kassel, University of Kassel

  • Carrasco A, Wegrzyn JL, Durán R, Fernández M, Donoso A, Rodriguez V, Neale D, Valenzuela S (2017) Expression profiling in Pinus radiata infected with Fusarium circinatum. Tree Genet Genomes 13:46

    Article  Google Scholar 

  • Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyles A, Bonello P, Ganley R, Mohammed C (2010) Induced resistance to pests and pathogens in trees. New Phytol 185:893–908

    Article  PubMed  Google Scholar 

  • Fabre B, Piou D, Desprez-Loustau ML, Marcais B (2011) Can the emergence of pine Diplodia shoot blight in France be explained by changes in pathogen pressure linked to climate change? Glob Chang Biol 17:3218–3227

    Article  Google Scholar 

  • Fraser S, Martın-Garcıa J, Perry A, Kabir MS, Owen T, Solla A, Brown AV, Bulman LS, Barnes I, Hale M-D, Vasconcelos MW, Lewis KJ, Dogmus-Lehtijarvi HT, Markovskaja S, Woodward S, Bradshaw RE (2016) A review of Pinaceae resistance mechanisms against needle and shoot pathogens with a focus on the DothistromaPinus interaction. For Path 46:453–471

    Article  Google Scholar 

  • Gibert J-M, Mouchel-Vielh E, De Castro S, Peronnet F (2016) Phenotypic plasticity throughtranscriptional regulation of the evolutionary hotspot gene tan in Drosophila melanogaster. PLoSGenet 12(8):e1006218

    Google Scholar 

  • Hu B, Sakakibara H, Kojima M, Takebayashi Y, Busskamp J, Langer G, Peters F, Schumacher J, Eiblmeier M, Kreuzwieser J, Rennenberg H (2018) Consequences of Sphaeropsis tip blight disease for the phytohormone profile and anti-oxidative metabolism of its pine host. Plant Cell Environ 41:737–754

    Article  CAS  PubMed  Google Scholar 

  • Karhu A, Hurme P, Karjalainen M, Karvonen P, Kärkkäinen K, Neale D, Savolainen O (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215–221

    Article  CAS  PubMed  Google Scholar 

  • de Kam M (1985) Sphaeropsis (Diplodia) shoot-dying: an incident or a permanent problem. Nederlands Bosbouwtijd schrift 57:118–122

    Google Scholar 

  • Klingberg N (2002) The effect of fungicide treatment on the nontarget foliar mycobiota of Pinus sylvestris-seedlings in Finnish forest nursery (Master thesis). University of Helsinki, Helsinki

    Google Scholar 

  • Kovalchuk A, Kerio S, Oghenekaro AO, Jaber E, Raffaello T, Asiegbu FO (2013) Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomic era. Annu Rev Phytopathol 51:221–244

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Provost G, Herrera G, Paiva JA, Chaumeil P, Salin F, Plomion C (2007) A micro method for high throughput RNA extraction in forest trees. Biol Res 40:291–297

    Article  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JJ, Sturrock RN, Benton R (2013) Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola. BMC Genomics 14:884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luchi N, Mancini V, Feducci M, Santini A, Capretti P (2012) Leptoglossus occidentalis and Diplodia pinea: a new insect-fungus association in Mediterranean forests. For Path 42:246–251

    Article  Google Scholar 

  • Luchi N, Oliveira Longa CM, Danti R, Capretti P, Maresi G (2014) Diplodia sapinea: the main fungal species involved in the colonization of pine shoots in Italy. For Path 44:372–381

    Article  Google Scholar 

  • Musacchia F, Basu S, Petrosino G, Salvemini M, Sanges R (2015) Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs. Bioinformatics 31:2199–2201

    Article  CAS  PubMed  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  CAS  PubMed  Google Scholar 

  • Oliva J, Boberg J, Stenlid J (2013) First report of Sphaeropsis sapinea on Scots pine (Pinus sylvestris) and Austrian pine (P. nigra) in Sweden. New Dis Rep 27:23

    Article  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36–e336

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/

    Google Scholar 

  • Robinson MD, Davis J, McCarthy DJ, Gordon K, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlichting CD, Smith H (2002) Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol Ecol 16:189–211

    Article  Google Scholar 

  • Schoettle AW, Sniezko R, Kegley A, Burns KS (2014) White pine blister rust in limber pine: evidence for a major gene. Phytopathology 104:163–173

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J (2012) Auftreten und Ausbreitung neuartiger Baumkrankheiten in Mitteleuropa unter Berücksichtigung klimatischer Aspekte. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Sherwood P, Bonello P (2013) Austrian pine phenolics are likely contributors to systemic induced resistance against Diplodia pinea. Tree Physiol 33:845–854

    Article  CAS  PubMed  Google Scholar 

  • Sherwood P, Villari C, Capretti P, Bonello P (2015) Mechanisms of induced susceptibility to Diplodia tip blight in drought-stressed Austrian pine. Tree Physiol 35:549–562

    Article  PubMed  Google Scholar 

  • Sun H, Paulin L, Alatalo E, Asiegbu FO (2011) Response of living tissues of Pinus sylvestris to the saprotrophic biocontrol fungus Phlebiopsis gigantea. Tree Physiol 31:438–451

    Article  PubMed  Google Scholar 

  • Vornam B, Kuchma O, Kuchma N, Arkhipov A, Finkeldey R (2004) SSRs are suitable markers to reveal mutation events in Scots pine (Pinus sylvestris L.) from Chernobyl. Eur J For Res 123:245–248

    Article  CAS  Google Scholar 

  • Vornam B, Arkhipov A, Finkeldey R (2012) Nucleotide diversity and gene expression of Catalase and Glutathione peroxidase in irradiated Scots pine (Pinus sylvestris L.) from the Chernobyl exclusion zone. J Environ Radioact 106:20–26

    Article  CAS  PubMed  Google Scholar 

  • Wachowiak W, Trivedi U, Perry A, Cavers S (2015) Comparative transcriptomics of a complex of four European pine species. BMC Genomics 16:23–243

    Article  Google Scholar 

  • de Wet J, Burges T, Slippers B, Preisig O, Wingfield BD, Wingfield MJ (2003) Multiple gene genealogies and microsatellite markers reflect relationship between morphotypes of Sphaeropsis sapinea and distinguish a new species of Diplodia. Mycol Res 107:557–566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to L. Kunz, A. Dolynska, and G. Dinkel for technical assistance in the laboratory.

Funding

This study was part of the “WAHYKLAS” project (No. 28WC403105) funded by the Bundesministerium für Ernährung und Landwirtschaft (BMEL) and the Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), Germany.

Author information

Authors and Affiliations

Authors

Contributions

BV wrote the manuscript. BV and FSP analyzed the qPCR data. FSP and JS performed the infection experiment. GS performed the RNA-sequencing. AW and AL analyzed the RNA-sequencing data. LL and OG contributed to the writing and reviewed and edited the manuscript. All authors read and approved the manuscript for final submission.

Corresponding authors

Correspondence to Barbara Vornam or Oliver Gailing.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

The ascomycete Sphaeropsis sapinea causes Diplodia tip blight in pine with devastating effects when associated with other abiotic stress factors such as drought. Here, we identified expressional candidate genes which are involved in defense responses and can be used in breeding programs for S. sapinea resistance.

Electronic Supplementary Material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vornam, B., Leinemann, L., Peters, F.S. et al. Response of Scots pine (Pinus sylvestris) seedlings subjected to artificial infection with the fungus Sphaeropsis sapinea. Plant Mol Biol Rep 37, 214–223 (2019). https://doi.org/10.1007/s11105-019-01149-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-019-01149-2

Keywords

Navigation