Skip to main content
Log in

Ethylene, but not salicylic acid or methyl jasmonate, induces a resistance response against Phytophthora capsici in Habanero pepper

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

We sprayed defence-related plant growth regulators (salicylic acid, methyl jasmonate and ethephon) on one-month-old Habanero pepper seedlings cultivated in vitro. Twenty-four hours later, we inoculated the seedlings with a virulent strain of Phytophthora capsici and periodically evaluated the disease symptoms. At the concentrations used, neither salicylic acid nor methyl jasmonate generated a protective effect in the seedlings, which died less than 10 days post inoculation. However, the treatment with 5 mM ethephon delayed or prevented disease symptoms in 30% of the seedlings. Interestingly, blocking the ethylene receptor with a previous application of 300 μM silver nitrate impeded the protective effects of ethephon. This result demonstrated that the plant resistance response required the perception of ethylene. Analysis of transcript populations in ethephon-treated seedlings revealed a direct correlation between survival and the accumulation of PR1, a gene marker of the systemic acquired resistance (SAR). Although the ethephon treatment also modified transcript levels of the plant defensin PDF1.2, a marker of the induced systemic resistance (ISR), in this case the accumulation also occurred when the ethylene receptor was blocked, suggesting a non-specific effect. The ethephon treatment did not modify the expression of NPR1 (a key transcriptional regulator of plant defence). Interestingly, transgenic pepper seedlings overexpressing endogenous PR10 or esterase genes, which are induced by the ET treatment, completely resisted the infection, which corroborated the importance of these genes in the defence response. Our results suggest that ethylene induced a systemic defence response in susceptible seedlings, possibly in an NPR1-independent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

dpi:

Days post inoculation

ET:

Ethylene

JA:

Jasmonic acid

MeJA:

Methyl jasmonate

PB:

Phytophthora blight

SA:

Salicylic acid

References

  • Ahmed, S. A., Pérez, C., & Candela, M. E. (2000). Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. European Journal of Plant Pathology, 106, 817–824.

    Article  Google Scholar 

  • Arcos-Ortega, G. F., Chan-Kuuk, R. A., González-Kantún, W. A., Souza-Perera, R., Nakazawa-Ueji, Y. E., Avilés-Berzunza, E., et al. (2010). Agrobacterium tumefaciens-transient genetic transformation of Habanero pepper (Capsicum chinense Jacq.) leaf explants. Electronic Journal of Biotechnology, 13, 7–8.

    Article  Google Scholar 

  • Baysal, Ö., Turgut, C., & Mao, G. (2005). Acibenzolar-S-methyl induced resistance to Phytophthora capsici in pepper leaves. Biologia Plantarum, 49, 599–604.

    Article  CAS  Google Scholar 

  • Beyer, E. M. (1976). A potent inhibitor of ethylene action in plants. Plant Physiology, 58, 268–271.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, J. D., Liu, Y., Klessig, D. F., & Dong, X. (1998). Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. The Plant Cell, 10, 557–569.

    Article  PubMed  CAS  Google Scholar 

  • Eyal, Y., Meller, Y., Lev-Yadun, S., & Fluhr, R. (1993). A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. The Plant Journal, 4, 225–234.

    Article  PubMed  CAS  Google Scholar 

  • Francia, D., Demaria, D., Calderini, O., Ferraris, L., Valentino, D., Arcioni, S., et al. (2007). Wounding induces resistance to pathogens with different lifestyles in tomato: role of ethylene in cross-protection. Plant, Cell & Environment, 30, 1357–1365.

    Article  CAS  Google Scholar 

  • Gil-Ortega, R., Palazón-Español, C., & Cuartero-Zueco, J. (1991). Genetics of resistance to Phytophthora capsici in the Mexican pepper SCM-334. Plant Breeding, 107, 50–55.

    Article  Google Scholar 

  • Hoegen, E., Strömberg, A., Pihlgren, U., & Kombrink, E. (2002). Primary structure and tissue-specific expression of the pathogenesis-related protein PR-1b in potato. Molecular Plant Pathology, 3, 329–345.

    Article  PubMed  CAS  Google Scholar 

  • Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Métraux, J. P., et al. (2001). Β-Aminobutiric acid-induced resistance in plants. European Journal of Plant Pathology, 107, 29–37.

    Article  CAS  Google Scholar 

  • Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review of Phytopathology, 44, 41–60.

    Article  PubMed  CAS  Google Scholar 

  • Kamoun, S., Lindqvist, H., & Govers, F. (1997). A novel class of elicitin-like genes from Phytophthora infestans. Molecular Plant-Microbe Interactions, 10, 1028–1030.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. J., & Hwang, B. K. (2000). Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible. Physiologia Plantarum, 108, 51–60.

    CAS  Google Scholar 

  • Kim, Y. J., Hwang, B. K., & Park, K. W. (1989). Expression of age—related resistance in Pepper plants infected with Phytophthora capsici. Plant Disease, 73, 745–747.

    Article  Google Scholar 

  • Ko, M. K., Jeon, W. B., Kim, K. S., Lee, H. H., Seo, H. H., Kim, Y. S., et al. (2005). A Colletotrichum gloeosporioides-induced esterase gene of nonclimacteric pepper (Capsicum annuum) fruit during ripening plays a role in resistance against fungal infection. Plant Molecular Biology, 58, 529–541.

    Article  PubMed  CAS  Google Scholar 

  • Kreutzer, W. A., Bodine, E. W., & Durrell, L. W. (1940). Cucurbit diseases and rot of tomato fruit caused by Phytophthora capsici. Phytopathology, 30, 972–976.

    Google Scholar 

  • Lawton, K. A., Potter, S. L., Uknes, S., & Ryals, J. (1994). Acquired resistance signal transduction in Arabidopsis is ethylene independent. The Plant Cell, 6, 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Leonian, L. H. (1922). Stem and fruit blight of pepper caused by Phytophthora capsici species nov. Phytopathology, 12, 401–408.

    Google Scholar 

  • Liu, J. J., & Ekramoddoullah, A. K. M. (2006). The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68, 3–13.

    Article  CAS  Google Scholar 

  • Nakazawa-Ueji, Y. E., Núñez-Pastrana, R., Souza-Perera, R. A., Santana-Buzzy, N., & Zúñiga-Aguilar, J. J. (2010). Mycelium homogenates from a virulent strain of Phytophthora capsici promote a defence-related response in cell suspensions from Capsicum chinense. European Journal of Plant Pathology, 126, 403–415.

    Article  CAS  Google Scholar 

  • Nespoulous, C., Gaudemer, O., Huet, J. C., & Pernollet, J. C. (1999). Characterization of elicitin-like phospholipases isolated from Phytophthora capsici culture filtrate. FEBS Letters, 452, 400–406.

    Article  PubMed  CAS  Google Scholar 

  • Palloix, A., Daubeze, A. M., Phaly, T., & Pochard, E. (1990). Breeding transgresive lines of pepper for resistance to Phytophthora capsici in a recurrent selection system. Euphytica, 51, 141–150.

    Google Scholar 

  • Park, C. J., Kim, K. J., Shin, R., Park, J. M., Shin, Y. C., & Paek, K. H. (2004). Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal, 37, 186–198.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse, C. M. J., & Van Loon, L. C. (1999). Salicylic acid-independent plant defence pathways. Trends in Plant Sciences, 4, 52–58.

    Article  Google Scholar 

  • Ricci, P., Bonnet, P., Huet, J. C., Sallantin, M., Beauvais-Cante, F., Bruneteau, M., et al. (1989). Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. European Journal of Biochemistry, 183, 555–563.

    Article  PubMed  CAS  Google Scholar 

  • Ristaino, J. B., Larkin, R. P., & Campbell, C. L. (1993). Spatial and temporal dynamics of Phytophthora epidemics in commercial bell pepper fields. Phytopathology, 83, 1312–1320.

    Article  Google Scholar 

  • Santamaria, M., Thomson, C. J., Read, N. D., & Loake, G. J. (2001). The promoter of a basic PR1-like gene, AtPRB1, from Arabidopsis establishes an organ-specific expression pattern and responsiveness to ethylene and methyl jasmonate. Plant Molecular Biology, 47, 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Shah, J., Kachroo, P., Nandi, A., & Klessig, D. F. (2001). A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. The Plant Journal, 25, 563–574.

    Article  PubMed  CAS  Google Scholar 

  • Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., et al. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defence pathways through a novel function in the cytosol. The Plant Cell, 15, 760–770.

    Article  PubMed  CAS  Google Scholar 

  • Sugita, T., Yamaguchi, K., Kinoshita, T., Yuji, K., Sugimura, Y., Nagata, R., et al. (2006). QTL analysis for resistance to Phytophthora blight (Phytophthora capsici Leon.) using an intraspecific doubled-haploid population of Capsicum annuum. Breeding Science, 56, 137–145.

    Article  CAS  Google Scholar 

  • Sunwoo, J. Y., Lee, Y. K., & Hwang, B. K. (1996). Induced resistance against Phytophthora capsici in pepper plants in response to DL-B-amino-n-butyric acid. European Journal of Plant Pathology, 102, 663–670.

    Article  CAS  Google Scholar 

  • Ueeda, M., Kubota, M., & Nishi, K. (2006). Contribution of jasmonic acid to resistance against Phytophthora blight in Capsicum annuum cv. SCM334. Physiological and Molecular Plant Pathology, 67, 149–154.

    Article  Google Scholar 

  • Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  PubMed  Google Scholar 

  • Van’t Klooster, J. W., Vleeshouwers, V. G. A. A., Kamoun, S., & Govers, F. (1999). Characterization of a cDNA encoding a pathogenesis-related protein PR1 from potato (Solanum tuberosum) (Accession No. AJ250136) (PGR99-182). Plant Physiology, 121, 1384.

    Google Scholar 

  • Whisson, S. C., Boevink, P. C., Moleleki, L., Avrova, A. O., Morales, J., Gilroy, E. M., et al. (2007). A translocation signal for delivery of oomycete effector proteins inside host plant cells. Nature, 450, 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D., Chen, C. & Chen, Z. (2001). Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell, 13, 1527–1539.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Q. Angela Kú Gonzalez for technical assistance in obtaining the scanning electron micrographs, and Dr. Felipe Barahona Pérez for technical assistance in the ethylene measurements. This project had funding from CONACYT grant P48831. RNP and GFAO gratefully acknowledge CONACYT for the scholarships 208245 and 56153, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Juan Zúñiga-Aguilar.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Materials

(PPTX 2282 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez-Pastrana, R., Arcos-Ortega, G.F., Souza-Perera, R.A. et al. Ethylene, but not salicylic acid or methyl jasmonate, induces a resistance response against Phytophthora capsici in Habanero pepper. Eur J Plant Pathol 131, 669–683 (2011). https://doi.org/10.1007/s10658-011-9841-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9841-z

Keywords

Navigation