Skip to main content
Log in

Mycelium homogenates from a virulent strain of Phytophthora capsici promote a defence-related response in cell suspensions from Capsicum chinense

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

We analysed changes in the transcript population produced in habanero pepper (Capsicum chinense) cell suspensions by the addition of whole mycelium homogenates from a pathogenic isolate of Phytophthora capsici, to identify plant cellular processes modified by the oomycete effectors. The elicitation produced several defence-like cellular responses: alkalinisation of the medium, a two-step oxidative burst, induction of β-1,3-glucanases, and activation of mitogen-activated protein kinases. The elicitation modified the accumulation of transcripts representative of diverse metabolic pathways, including ethylene biosynthetic enzymes, MAP kinases and defence-related products, like PR proteins, but did not affect the expression of C. chinense NPR1 and WRKY orthologue genes, which are important modulators of plant defence responses. Interestingly, apart from some defence-related genes, inoculation of six-leaf-stage habanero pepper plantlets with the pathogenic isolate revealed few systemic modifications in the transcript patterns. All plantlets ultimately died, even though the in planta inoculation induced the strong accumulation of two MAPK transcripts. As few resistance-related genes were expressed in susceptible habanero pepper plantlets that died, either the extent or the timing of the defence response could be insufficient to establish a proper response against Phytophthora blight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MAPK:

Mitogen-activated protein kinase

DOC:

Days of culture

MPI:

Minutes post-induction

DAI:

Days after inoculation

MyH:

Mycelium homogenates from Phytophthora capsici

References

  • Birch, P. R. J., Rehmany, A. P., Pritchard, L., Kamoun, S., & Beynon, J. L. (2006). Trafficking arms: oomycete effectors enter host plant cells. Trends in Microbiology, 14, 8–11.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. A. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Canto-Flick, A., Balam-Uc, E., Bello-Bello, J. J., Lecona-Guzmán, C., Solís-Marroquín, D., Avilés-Viñas, S., et al. (2008). Capsaicinoids content in Habanero Pepper (Capsicum chinense Jacq.): Hottest known cultivars. HortScience, 43, 1344–1349.

    Google Scholar 

  • Davies, D. R., Bindschedler, L. V., Strickland, T. S., & Bolwell, G. P. (2006). Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum: implications for basal resistance. Journal of Experimental Botany, 57, 1817–1827.

    Article  CAS  PubMed  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  • Eckardt, N. A. (2002). Plant disease susceptibility genes. The Plant Cell, 14, 1983–1986.

    Article  CAS  PubMed  Google Scholar 

  • Eulgem, T., Rushton, P. J., Schmelzer, E., Hahlbrock, K., & Somssich, I. E. (1999). Early nuclear events in plant defense signaling: rapid gene activation by WRKY transcription factors. The EMBO Journal, 18, 4689–4699.

    Article  CAS  PubMed  Google Scholar 

  • Felix, G., Regenass, M., & Boller, T. (1993). Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. The Plant Journal, 4, 307–316.

    Article  CAS  Google Scholar 

  • Frye, C. A., Tang, D., & Innes, R. W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proceedings of the National Academy of Sciences, USA, 98, 373–378.

    Article  CAS  Google Scholar 

  • Frishman, D., Albermann, K., Hani, J., Heumann, K., Metanomski, A., Zollner, A., et al. (2001). Functional and structure genomics using PEDANT. Bioinformatics, 17, 44–57.

    Article  CAS  PubMed  Google Scholar 

  • García-Pérez, M. D., Egea, C., & Candela, M. E. (1998). Defense response of pepper (Capsicum annuum) suspension cells to Phytophthora capsici. Physiologia Plantarum, 103, 527–533.

    Article  Google Scholar 

  • Göhre, V., & Robatzek, S. (2008). Breaking the barriers: microbial effector molecules subvert plant immunity. Annual Review of Phytopathology, 46, 189–215.

    Article  PubMed  Google Scholar 

  • Hamada, H., Takeuchi, S., Kiba, A., Tsuda, S., Suzuki, K., Hikichi, Y., et al. (2005). Timing and extent of hypersensitive response are critical to restrict local and systemic spread of Pepper mild mottle virus in pepper containing the L3 gene. Journal of General Plant Pathology, 71, 90–94.

    Article  CAS  Google Scholar 

  • Hausbeck, M. K., & Lamour, K. H. (2004). Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Disease, 88, 1292–1303.

    Article  Google Scholar 

  • Hofmann, M. G., Sinha, A. K., Proels, R. K., & Roitsch, T. (2008). Cloning and characterization of a novel LpWRKY1 transcription factor in tomato. Plant Physiology and Biochemistry, 46, 533–540.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, R. H. Y., Tripathy, S., Govers, F., & Tyler, B. M. (2008). RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proceedings of the National Academy of Sciences, USA, 105, 4874–4879.

    Article  CAS  Google Scholar 

  • Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review of Phytopathology, 44, 41–60.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. J., & Hwang, B. K. (1994). Differential accumulation of β-1, 3-glucanase and chitinase isoforms in pepper stems infected by compatible and incompatible isolates of Phytophthora capsici. Physiological and Molecular Plant Pathology, 45, 195–209.

    Article  CAS  Google Scholar 

  • Lee, B. K., Kim, B. S., Chang, S. W., & Hwang, B. K. (2001). Aggressiveness to pumpkin cultivars of isolates of Phytophthora capsici from pumpkin and pepper. Plant Disease, 85, 497–500.

    Article  Google Scholar 

  • Leonian, L. (1922). Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology, 12, 401–408.

    Google Scholar 

  • Maeo, K., Hayashi, S., Kojima-Suzuki, H., Morikami, A., & Nakamura, K. (2001). Role of conserved residues of the WRKY domain in DNA-binding of tobacco WRKY family proteins. Bioscience, Biotechnology and Biochemistry, 65, 2428–2436.

    Article  CAS  Google Scholar 

  • Oelke, L. M., Bosland, P. W., & Steiner, R. (2003). Differentiation of race specific resistance to Phytophthora root rot and foliar blight in Capsicum annuum. Journal of the American Society for Horticultural Science, 128, 213–218.

    Google Scholar 

  • Park, C. J., Shin, Y. C., Lee, B. J., Kim, K. J., Kim, J. K., & Paek, K. H. (2005). A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to Tobacco mosaic virus and Xanthomonas campestris. Planta, 223, 168–179.

    Article  PubMed  Google Scholar 

  • Parra, G., & Ristaino, J. (2001). Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing phytophthora blight of bell pepper. Plant Disease, 85, 1069–1075.

    Article  CAS  Google Scholar 

  • Rayapuram, C., & Baldwin, I. T. (2007). Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. The Plant Journal, 52, 700–715.

    Article  CAS  PubMed  Google Scholar 

  • Skibbe, M., Qu, Q., Galis, I., & Baldwin, I. T. (2008). Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. The Plant Cell, 20, 1984–2000.

    Article  CAS  PubMed  Google Scholar 

  • Thabuis, A., Palloix, A., Servin, B., Daubèze, A. M., Signoret, P., Hospital, F., et al. (2004). Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Molecular Breeding, 14, 9–20.

    Article  CAS  Google Scholar 

  • Vleeshouwers, V. G. A. A., van Dooijeweert, W., Govers, F., Kamoun, S., & Colon, L. T. (2000). The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta, 210, 853–864.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., & Klessig, D. F. (2001). MAPK cascades in plant defense signaling. Trends in Plant Science, 11, 520–527.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Felipe Vázquez for the kind gift of the cell suspension culture, and M.C. Miriam Monforte, M.C. Rosa Maria Galáz, M.C. Lizbeth Castro, Dr. Ignacio Islas and Q. Ligia Brito for technical assistance. Dr. Ken Evans is also thanked for the critical review of the manuscript. This project has a CONACYT grant (P48831). YENU and RNP have CONACYT PhD fellowships (172927 and 208245, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Juan Zúñiga-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakazawa-Ueji, Y.E., Núñez-Pastrana, R., Souza-Perera, R.A. et al. Mycelium homogenates from a virulent strain of Phytophthora capsici promote a defence-related response in cell suspensions from Capsicum chinense . Eur J Plant Pathol 126, 403–415 (2010). https://doi.org/10.1007/s10658-009-9544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9544-x

Keywords

Navigation