Skip to main content
Log in

Vertical distribution and contamination assessment of heavy metals in sediment cores of ship breaking area of Bangladesh

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Vertical heavy metal profiling reflects the history of the deposition of metals and helps to understand the characteristics of accumulation in various layers of the sediment. Nevertheless, no previous studies in Bangladesh had focused on the vertical distribution of heavy metals in core sediments. In this study, vertical distribution, contamination level and potential ecological risks of six heavy metals (Zn, Cu, Pb, Cr, Ni, Mn) from the core sediment of ship breaking were assessed and compared with the non-ship breaking area of Bangladesh. The concentration (µg/g) of heavy metals in the 0–10 cm (surface), 10–20 cm (middle) and 20–30 cm (bottom) of sediment cores was as follows, respectively: Zn (35.54–100.68, 37.27–258.02, 42.78–66.45); Cu (16.38–75.25, 30.64–92.02, 34.99–52.98); Pb (4.84–132.08, BDL–204.48, BDL–23.51); Cr (14.57–42.13, 25.31–42.71, 15.26–36.34); Ni (4.02–42.23, 4.94–43.70, 4.40–43.13); Mn (198.74–764.16, 257.77–980.50, 255.62–856.44). The heavy metal content of core sediment from the shipbreaking region was substantially higher than that of non-shipbreaking area. Except for Ni, heavy metal content was highest in the middle layer, followed by the upper and lower layers of the sediment core. Contamination exponents such as enrichment factor, contamination factor and geo-accumulation index (Igeo) revealed contamination by Zn, Cu and Pb while potential ecological risk factor (\(E_{r}^{i}\)) and risk index suggested low ecological risk by studied heavy metals except for Pb. Correlation matrix, cluster analysis and principal component analysis indicated that all studied heavy metals could have similar anthropogenic origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data and materials require to understand the study are presented in the manuscript.

Code availability

Not applicable for this study.

References

  • Abdullah, H. M., Mahboob, M. G., Banu, M. R., & Seker, D. Z. (2013). Monitoring the drastic growth of ship breaking yards in Sitakunda: a threat to the coastal environment of Bangladesh. Environmental Monitoring and Assessment, 185(5), 3839–3851.

    Article  CAS  Google Scholar 

  • Afshan, S., Ali, S., Ameen, U. S., Farid, M., Bharwana, S. A., Hannan, F., & Ahmad, R. (2014). Effect of different heavy metal pollution on fish. Research Journal of Chemical and Environmental Sciences, 2(1), 74–79.

    CAS  Google Scholar 

  • Ahmadov, M., Humbatov, F., Mammadzada, S., Balayev, V., Ibadov, N., & Ibrahimov, Q. (2020). Assessment of heavy metal pollution in coastal sediments of the western Caspian Sea. Environmental Monitoring and Assessment, 192(8), 1–18.

    Article  CAS  Google Scholar 

  • Ahmed, A. S. S., Hossain, M. B., Semme, S. A., Babu, S. M. O. F., Hossain, K., & Moniruzzaman, M. (2020). Accumulation of trace elements in selected fish and shellfish species from the largest natural carp fish breeding basin in Asia: a probabilistic human health risk implication. Environmental Science and Pollution Research, 27(30), 37852–37865.

    Article  CAS  Google Scholar 

  • Ahmed, A. S. S., Sultana, S., Habib, A., Ullah, H., Musa, N., Hossain, M. B., Rahman, M. M., & Sarker, M. S. I. (2019). Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS ONE, 14(10), e0219336.

    Article  CAS  Google Scholar 

  • Ahmed, M. K., Baki, M. A., Islam, M. S., Kundu, G. K., Habibullah-Al-Mamun, M., Sarkar, S. K., & Hossain, M. M. (2015). Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga Bangladesh. Environmental Science and Pollution Research, 22(20), 15880–15890.

    Article  CAS  Google Scholar 

  • Ahmed, M. K., Shaheen, N., Islam, M. S., Habibullah-al-Mamun, M., Islam, S., Mohiduzzaman, M., & Bhattacharjee, L. (2015). Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere, 128, 284–292.

    Article  CAS  Google Scholar 

  • Aktaruzzaman, M., Chowdhury, M. A. Z., Fardous, Z., Alam, M. K., Hossain, M. S., & Fakhruddin, A. N. M. (2014). Ecological risk posed by heavy metals contamination of ship breaking yards in Bangladesh. International Journal of Environmental Research, 8(2), 469–478.

    Google Scholar 

  • Amin, B., Ismail, A., Arshad, A., Yap, C. K., & Kamarudin, M. S. (2009). Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai Indonesia. Environmental Monitoring and Assessment, 148(1–4), 291–305.

    Article  CAS  Google Scholar 

  • Armstrong-Altrin, J. S., Machain-Castillo, M. L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J. A., & Ruíz-Fernández, A. C. (2015). Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95, 15–26.

    Article  Google Scholar 

  • Bhuiyan, M. A. H., Karmaker, S. C., Bodrud-Doza, M., Rakib, M. A., & Saha, B. B. (2020). Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM PMF and GIS methods. Chemosphere, 263, 128339.

    Article  CAS  Google Scholar 

  • Birch, G. F., & Olmos, M. A. (2008). Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES Journal of Marine Science, 65(8), 1407–1413.

    Article  CAS  Google Scholar 

  • Chen, C. F., Dong, C. D., & Chen, C. W. (2013). Evaluation of sediment toxicity in Kaohsiung Harbor, Taiwan. Soil and Sediment Contamination: An International Journal, 22(3), 301–314.

    Article  CAS  Google Scholar 

  • Chen, C. F., Ju, Y. R., Chen, C. W., & Dong, C. D. (2016). Vertical profile, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor Taiwan. Chemosphere, 165, 67–79.

    Article  CAS  Google Scholar 

  • Chen, C. W., Kao, C. M., Chen, C. F., & Dong, C. D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor Taiwan. Chemosphere, 66(8), 1431–1440.

    Article  CAS  Google Scholar 

  • Chung, C. Y., Chen, J. J., Lee, C. G., Chiu, C. Y., Lai, W. L., & Liao, S. W. (2011). Integrated estuary management for diffused sediment pollution in Dapeng Bay and neighboring rivers (Taiwan). Environmental Monitoring and Assessment, 173(1–4), 499–517.

    Article  CAS  Google Scholar 

  • Dalman, Ö., Demirak, A., & Balcı, A. (2006). Determination of heavy metals (Cd, Pb) and trace elements (Cu, Zn) in sediments and fish of the Southeastern Aegean Sea (Turkey) by atomic absorption spectrometry. Food Chemistry, 95(1), 157–162.

    Article  CAS  Google Scholar 

  • Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y., Zhao, D., An, S., & Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. Journal of Hazardous Materials, 270, 102–109.

    Article  CAS  Google Scholar 

  • Gao, W., Du, Y., Gao, S., Ingels, J., & Wang, D. (2016). Heavy metal accumulation reflecting natural sedimentary processes and anthropogenic activities in two contrasting coastal wetland ecosystems, eastern China. Journal of Soils and Sediments, 16(3), 1093–1108.

    Article  CAS  Google Scholar 

  • Ghosh, S., Ram, S. S., Bakshi, M., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2016). Vertical and horizontal variation of elemental contamination in sediments of Hooghly Estuary India. Marine Pollution Bulletin, 109(1), 539–549.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

    Google Scholar 

  • Hasan, A. B., Kabir, S., Reza, A. S., Zaman, M. N., Ahsan, A., & Rashid, M. (2013). Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary–Kumira), Chittagong, Bangladesh. Journal of Geochemical Exploration, 125, 130–137.

    Article  CAS  Google Scholar 

  • Hossain, M. B., Habib, S. B., Hossain, M. S., Jolly, Y. N., Kamal, A. H. M., Idris, M. H., & Rakib, M. R. J. (2020). Data set on trace metals in surface sediment and water from a sub-tropical estuarine system, Bay of Bengal Bangladesh. Data in Brief, 31, 105911.

    Article  Google Scholar 

  • Hossain, M. B., Shanta, T. B., Ahmed, A. S., Hossain, M. K., & Semme, S. A. (2019). Baseline study of heavy metal contamination in the Sangu River estuary, Chattogram, Bangladesh. Marine Pollution Bulletin, 140, 255–261.

    Article  CAS  Google Scholar 

  • Hossain, M. S., Fakhruddin, A. N. M., Chowdhury, M. A. Z., & Gan, S. H. (2016). Impact of ship-breaking activities on the coastal environment of Bangladesh and a management system for its sustainability. Environmental Science and Policy, 60, 84–94.

    Article  CAS  Google Scholar 

  • Islam, M. A., Al-Mamun, A., Hossain, F., Quraishi, S. B., Naher, K., Khan, R., Das, S., Tamim, U., Hossain, S. M., & Nahid, F. (2017). Contamination and ecological risk assessment of trace elements in sediments of the rivers of Sundarban mangrove forest Bangladesh. Marine Pollution Bulletin, 124(1), 356–366.

    Article  CAS  Google Scholar 

  • Islam, M. S., Hossain, M. B., Matin, A., & Sarker, M. S. I. (2018). Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere, 202, 25–32.

    Article  CAS  Google Scholar 

  • Kükrer, S., Şeker, S., Abacı, Z. T., & Kutlu, B. (2014). Ecological risk assessment of heavy metals in surface sediments of northern littoral zone of Lake Çıldır, Ardahan Turkey. Environmental Monitoring and Assessment, 186(6), 3847–3857.

    Article  CAS  Google Scholar 

  • Kumar, A., Ramanathan, A. L., Prasad, M. B. K., Datta, D., Kumar, M., & Sappal, S. M. (2016). Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014. Environmental Science and Pollution Research, 23(9), 8985–8999.

    Article  CAS  Google Scholar 

  • Li, F., Fan, Z., Xiao, P., Oh, K., Ma, X., & Hou, W. (2009). Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environmental Geology, 57(8), 1815–1823.

    Article  CAS  Google Scholar 

  • Liu, B., Hu, K., Jiang, Z., Yang, J., Luo, X., & Liu, A. (2011). Distribution and enrichment of heavy metals in a sediment core from the Pearl River Estuary. Environmental Earth Sciences, 62(2), 265–275.

    Article  CAS  Google Scholar 

  • Looi, L. J., Aris, A. Z., Yusoff, F. M., Isa, N. M., & Haris, H. (2019). Application of enrichment factor, geoaccumulation index, and ecological risk index in assessing the elemental pollution status of surface sediments. Environmental Geochemistry and Health, 41, 27–42.

    Article  CAS  Google Scholar 

  • Malvandi, H. (2017). Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments Iran. Marine Pollution Bulletin, 117(1–2), 547–553.

    Article  CAS  Google Scholar 

  • Martinez, E. A., Moore, B. C., Schaumloffel, J., & Dasgupta, N. (2002). The potential association between menta deformities and trace elements in Chironomidae (Diptera) taken from a heavy metal contaminated river. Archives of Environmental Contamination and Toxicology, 42(3), 286–291.

    Article  CAS  Google Scholar 

  • Mohammadi, A., Hajizadeh, Y., Taghipour, H., Mosleh Arani, A., Mokhtari, M., & Fallahzadeh, H. (2018). Assessment of metals in agricultural soil of surrounding areas of Urmia Lake, northwest Iran: A preliminary ecological risk assessment and source identification. Human and Ecological Risk Assessment: An International Journal, 24(8), 2070–2087.

    Article  CAS  Google Scholar 

  • Mohiuddin, K. M., Otomo, K., Ogawa, Y., & Shikazono, N. (2012). Seasonal and spatial distribution of trace elements in the water and sediments of the Tsurumi River in Japan. Environmental Monitoring and Assessment, 184(1), 265–279.

    Article  CAS  Google Scholar 

  • Müller, G. (1979). Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umschau, 79, 778–783.

    Google Scholar 

  • Nath, B. N., Kunzendorf, H., & Pluger, W. L. (2000). Influence of provenance, weathering, and sedimentary processes on the elemental ratios of the fine-grained fraction of the bedload sediments from the Vembanad Lake and the adjoining continental shelf, southwest coast of India. Journal of Sedimentary Research, 70(5), 1081–1094.

    Article  CAS  Google Scholar 

  • Nawrot, N., Wojciechowska, E., Matej-Łukowicz, K., Walkusz-Miotk, J., & Pazdro, K. (2019). Spatial and vertical distribution analysis of heavy metals in urban retention tanks sediments: a case study of Strzyza Stream. Environmental Geochemistry and Health, 42, 1–17.

    Google Scholar 

  • Niu, Y., Jiang, X., Wang, K., Xia, J., Jiao, W., Niu, Y., & Yu, H. (2020). Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu China. Science of the Total Environment, 700, 134509.

    Article  CAS  Google Scholar 

  • Obhođaš, J., Kutle, A., & Valković, V. (2006). Concentrations of some elements in the coastal sea sediments: bays with marinas. Journal of Radioanalytical and Nuclear Chemistry, 270(1), 75–85.

    Article  CAS  Google Scholar 

  • Ogundele, L. T., & Ayeku, P. O. (2020). Source apportionment and associated potential ecological risk assessment of heavy metals in coastal marine sediments samples in Ondo, Southwest, Nigeria. Stochastic Environmental Research and Risk Assessment, 34(11), 2013–2022.

    Article  Google Scholar 

  • Oluyemi, E. A., Feuyit, G., Oyekunle, J. A. O., & Ogunfowokan, A. O. (2008). Seasonal variations in heavy metal concentrations in soil and some selected crops at a landfill in Nigeria. African Journal of Environmental Science and Technology, 2(5), 89–96.

    Google Scholar 

  • Ozaki, H., City, F., Ichise, H., Fukushi, K., & Watanabe, I. (2015). A comparative study of the vertical profiles of heavy metal concentration in sediment core samples from the Ainoya pond neighboring Watarase retarding basin and its relation to historic copper mining in Ashio. Environmental Science, 28(1), 3–15.

    Google Scholar 

  • Rahman, M. S., Hossain, M. B., Babu, S. M. O. F., Rahman, M., Ahmed, A. S. S., Jolly, Y. N., Choudhury, T. R., Begum, B. A., Kabir, J., & Akter, S. (2019). Source of metal contamination in sediment, their ecological risk, and phytoremediation ability of the studied mangrove plants in ship breaking area, Bangladesh. Marine Pollution Bulletin, 141, 137–146.

    Article  CAS  Google Scholar 

  • Ranjan, R. K., Ramanathan, A. L., Singh, G., & Chidambaram, S. (2008). Assessment of metal enrichments in tsunamigenic sediments of Pichavaram mangroves, southeast coast of India. Environmental Monitoring and Assessment, 147(1–3), 389–411.

    Article  CAS  Google Scholar 

  • Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78.

    Article  CAS  Google Scholar 

  • Saleem, M., Iqbal, J., & Shah, M. H. (2015). Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments—a case study from Mangla Lake, Pakistan. Environmental Nanotechnology, Monitoring and Management, 4, 27–36.

    Article  Google Scholar 

  • Sayadi, M. H., Sayyed, M. R. G., & Kumar, S. (2010). Short-term accumulative signatures of heavy metals in river bed sediments in the industrial area, Tehran Iran. Environmental Monitoring and Assessment, 162(1–4), 465–473.

    Article  CAS  Google Scholar 

  • Selvam, S., Venkatramanan, S., Hossain, M. B., Chung, S. Y., Khatibi, R., & Nadiri, A. A. (2020). A study of health risk from accumulation of metals in commercial edible fish species at Tuticorin coasts of southern India. Estuarine, Coastal and Shelf Science, 245, 106929.

    Article  CAS  Google Scholar 

  • Sfakianakis, D. G., Renieri, E., Kentouri, M., & Tsatsakis, A. M. (2015). Effect of heavy metals on fish larvae deformities: a review. Environmental Research, 137, 246–255.

    Article  CAS  Google Scholar 

  • Siddique, M. A. M., Mustafa Kamal, A. H., & Aktar, M. (2012). Trace metal concentrations in salt marsh sediments from Bakkhali River estuary, Cox’s Bazar Bangladesh. Zoology and Ecology, 22(3–4), 254–259.

    Article  Google Scholar 

  • Siddiquee, N. A., Parween, S., Quddus, M. M. A., & Barua, P. (2012). Heavy metal pollution in sediments at ship breaking area of Bangladesh. In Coastal Environments: Focus on Asian Regions (pp. 78–87). Springer, Dordrecht.

  • Simeonov, V., Massart, D. L., Andreev, G., & Tsakovski, S. (2000). Assessment of metal pollution based on multivariate statistical modeling of ‘hot spot’sediments from the Black Sea. Chemosphere, 41(9), 1411–1417.

    Article  CAS  Google Scholar 

  • Sinex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Chesapeake Bay sediments. Environmental Geology, 3(6), 315–323.

    Article  CAS  Google Scholar 

  • Singh, V. K., Singh, K. P., & Mohan, D. (2005). Status of heavy metals in water and bed sediments of river Gomti–A tributary of the Ganga river India. Environmental Monitoring and Assessment, 105(1–3), 43–67.

    Article  CAS  Google Scholar 

  • Suresh, G., Ramasamy, V., Meenakshisundaram, V., Venkatachalapathy, R., & Ponnusamy, V. (2011). Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Applied Radiation and Isotopes, 69(10), 1466–1474.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    Article  CAS  Google Scholar 

  • Varol, M., & Şen, B. (2012). Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. CATENA, 92, 1–10.

    Article  CAS  Google Scholar 

  • Wang, A. J., Kawser, A., Xu, Y. H., Ye, X., Rani, S., & Chen, K. L. (2016). Heavy metal accumulation during the last 30 years in the Karnaphuli River estuary, Chittagong Bangladesh. Springerplus, 5(1), 2079.

    Article  CAS  Google Scholar 

  • Wang, G., Yinglan, A., Jiang, H., Fu, Q., & Zheng, B. (2015). Modeling the source contribution of heavy metals in surficial sediment and analysis of their historical changes in the vertical sediments of a drinking water reservoir. Journal of Hydrology, 520, 37–51.

    Article  CAS  Google Scholar 

  • Wang, X., Sun, Y., Li, S., & Wang, H. (2019). Spatial distribution and ecological risk assessment of heavy metals in soil from the Raoyanghe Wetland China. PLoS ONE, 14(8), e0220409.

    Article  CAS  Google Scholar 

  • Yang, H., Rose, N. L., Battarbee, R. W., & Boyle, J. F. (2002). Mercury and lead budgets for Lochnagar, a Scottish mountain lake and its catchment. Environmental Science and Technology, 36(7), 1383–1388.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bangladesh Council of Scientific and Industrial Research (BCSIR) for providing necessary instrumental facilities for heavy metal analysis. The authors thank As−Ad Ujjaman Nur for his assistance during this study. Insights from anonymous reviewer have greatly improved the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MBH contributed to conceptualization, design, supervision, visualization, writing–review and editing; UHR done investigation and methodology; MMS contributed to data analysis, writing–original draft, review and editing; MKH helped in methodology and resources.

Corresponding author

Correspondence to Mohammad Belal Hossain.

Ethics declarations

Conflict of interest

The authors have no competing of interest to declare with any others.

Consent to participate

Not Applicable.

Consent to publish before reference in the manuscript

Full consent given.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.B., Runu, U.H., Sarker, M.M. et al. Vertical distribution and contamination assessment of heavy metals in sediment cores of ship breaking area of Bangladesh. Environ Geochem Health 43, 4235–4249 (2021). https://doi.org/10.1007/s10653-021-00919-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00919-w

Keyword

Navigation