Skip to main content
Log in

Evaluation of sediment contamination with heavy metals: the importance of determining appropriate background content and suitable element for normalization

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In the present study, concentrations of heavy metals (Cd, Cu, Co, Mn, Cr, Ni, Pb, and Zn) were determined at 35 river sediments in Serbia. The anthropogenic heavy metals input and quantification of the metal enrichment degree in sediments were estimated by calculating geo-accumulation indices (I geo) and enrichment factors (EF). These pollution indices have been calculated using different background values (continental crust and local background values) and different element used for normalization (Al and Fe), followed by result comparison. The EF values calculated with continental crust as background (minor to extremely severe enrichment) were higher than when regional background values were used (minor to moderate enrichment). Significant influence of background values on the I geo values is observed. Values of geo-accumulation index (<2) revealed that studied river sediments are remaining unpolluted to moderately polluted with Co, Mn, Cr, and Ni. Significant pollution in the sediments was observed for Cd, Cu, Pb, and Zn elements. The results of this study confirm the relevance of precise and accurate determining of local background concentrations while assessing sediment pollution. The values of EFs for studied elements were more influenced by the choice of background values than selection of element used for normalization. Our recommendation would be to use the local and regional background content in quantification of metal contamination in sediments, since these values differ and are site and region dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    Article  CAS  Google Scholar 

  • Acevedo-Figueroa, D., Jime´ nez, B. D., & Rodrı´guez-Sierra, C. J. (2006). Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environmental Pollution, 141, 336–342.

    Article  CAS  Google Scholar 

  • Asa, S. C., Rath, P., Panda, U. C., Parhi, P. K., & Bramha, S. (2013). Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, east Coast of India. Environmental Monitoring and Assessment,. doi:10.1007/s10661-013-3060-3.

    Google Scholar 

  • Barać, M., Vitas, N., & Janićijević, S. (2009). Heavy metals and Trepče landfills in the middle flow of the river Ibar. Ecologica, 16, 401–408. (in Serbian).

    Google Scholar 

  • Bartoli, G., Papa, S., Sagnella, E., & Fioretto, A. (2012). Heavy metal content in sediments along the Calore River: Relationships with physical-chemical characteristics. Journal of Environmental Management, 95, S9–S14.

    Article  CAS  Google Scholar 

  • Botsou, F., Karageorgis, A. P., Dassenakis, E. M., & Scoullos, M. (2011). Assessment of heavy metal contamination and mineral magnetic characterization of the Asopos River sediments (Central Greece). Marine Pollution Bulletin, 62, 547–563.

    Article  CAS  Google Scholar 

  • Carvalho, A., Schropp, S. J., Sloane, G., Biernacki, T. P., & Seal, T. L. (2002). Development of an interpretive tool for assessment of metal enrichment in Florida freshwater sediment. Florida: Florida Department of Environmental Protection Tallahassee.

    Google Scholar 

  • Chand, M., & Prasad, S. (2013). ICP-OES assessment of heavy metal contamination in tropical marine sediments: A comparative study of two digestion techniques. Microchemical Journal, 111, 53–61.

    Article  CAS  Google Scholar 

  • Chen, M., & Ma, L. Q. (1998). Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. Journal of Environmental Quality, 27, 1294–1300.

    Article  CAS  Google Scholar 

  • Choi, K. Y., Kim, S. H., Hong, G. H., & Chon, H. T. (2012). Distributions of heavy metals in the sediments of South Korean harbors. Environmental Geochemistry and Health, 34, 71–82.

    Article  CAS  Google Scholar 

  • Cobelo-García, A., & Prego, R. (2003). Heavy metal sedimentary record in Galician Ria (NW Spain): background values and recent contamination. Marine Pollution Bulletin, 46, 1253–1262.

    Article  Google Scholar 

  • Comero, S., Vaccaro, S., Locoro, G., Capitani, L. D., & Gawlik, B. M. (2014). Characterization of the Danube River sediments using the PMF multivariate approach. Chemosphere, 95, 329–335.

    Article  CAS  Google Scholar 

  • Corazza, M. Z., Abrão, T., Lepri, F. G., Gimenez, S. M. N., Olivieria, E., & Santos, M. J. (2012). Monte Carlo method applied to modeling copper transport in river sediments. Stochastic Environmental Research and Risk Assessment, 26, 1063–1079.

    Article  Google Scholar 

  • Cukrov, N., Frančišković-Bilinski, S., & Bogner, D. (2013). Metal contamination recorded in the sediment of the semi-closed Bakar Bay (Croatia). Environmental Geochemistry and Health,. doi:10.1007/s10653-013-9558-3.

    Google Scholar 

  • Dauvalter, V., & Rognerrud, S. (2001). Heavy metal pollution in sediments of the Pasvik River drainage. Chemosphere, 42, 9–18.

    Article  CAS  Google Scholar 

  • Deveza-Rey, R., Díaz-Fierros, F., & Barral, M. T. (2009). Normalization strategies for river bed sediments: A graphical approach. Microchemical Journal, 91, 253–265.

    Article  Google Scholar 

  • Duce, R. A., Hoffman, G. L., Ray, B. J., Fletcher, I. S., Wallace, G. T., Tiotrowicz, S. R., et al. (1976). Trace metals in the marine atmosphere: sources and fluxes. In H. L. Windom & R. A. Duce (Eds.), Marine pollutant transfer. Lexington, Massachusetts: Lexington Books.

    Google Scholar 

  • Ekwere, A. S., & Elueze, A. A. (2012). Trace element assessment of stream sediments around the aluminium smelting company in Ikot-Abasi, South-Eastern Nigeria. Research Journal of Applied Sciences, Engineering and Technology, 4, 256–261.

    CAS  Google Scholar 

  • Gao, H., Bai, J., Xiao, R., Liu, P., Jiang, W., & Wang, J. (2013). Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stochastic Environmental Research and Risk Assessment, 27, 275–284.

    Article  Google Scholar 

  • Ho, H. H., Swennen, R., Cappuyns, V., Vassilieva, E., & Tran, T. V. (2012). Necessity of normalization to aluminum to assess the contamination by heavy metals and arsenic in sediments near Haiphong Harbor, Vietnam. Journal of Asian Earth Sciences, 56, 229–239.

    Article  Google Scholar 

  • Hu, X., Wang, C., & Zou, L. (2011). Characteristics of heavy metals and Pb isotopic signatures in sediments cores collected from typical urban shallow lakes in Nanjing, China. Journal of Environmental Management, 92, 742–748.

    Article  CAS  Google Scholar 

  • Jain, C. K., Singhal, D. C., & Sharma, M. K. (2005). Metal pollution assessment of sediment and water in the river Hindon, India. Environmental Monitoring and Assessment, 105, 193–207.

    Article  CAS  Google Scholar 

  • Kabir, M. I., Lee, H., Kim, G., & Jun, T. (2011). Correlation assessment and monitoring of the potential pollutants in the surface sediments of Pyeongchang River, Korea. International Journal of Sediment Research, 26, 152–162.

    Article  Google Scholar 

  • Kostić, N. M., Jakovljević, M. D., Hadžić, V. B., & Protić, J. (2001). Mineralogy and agrochemistry of magnesium in soils of Vojvodina, Šumadija and Northern Pomoravlje. Proceedings for Natural Sciences, 100, 115–126. Matica Srpska.

    Google Scholar 

  • Lin, C. E., Chen, C. T., Kao, C. M., Hong, A., & Wu, C. Y. (2011). Development of the sediment and water quality management strategies for the Salt-water River Taiwan. Marine Pollution Bulletin, 63, 528–534.

    Article  CAS  Google Scholar 

  • Louriño-Cabala, B., Levsen, L., Charriau, A., Billon, G., Ouddane, B., & Boughriet, A. (2011). Potential risks of metal toxicity in contaminated sediments of Deûle river in Northern France. Journal of Hazardous Materials, 186, 2129–2137.

    Article  Google Scholar 

  • Marinos, P. G., Koukis, G. C., Tsiambaos, G. C., & Stournaras, G. C. (1997). Engineering Geology and the Environment, Tom 3. Rotterdam: Balkema.

    Google Scholar 

  • McBride, M. B. (1994). Environmental Chemistry of Soils. New York: Oxford University Press. 406 pp.

    Google Scholar 

  • Mediolla, L. L., Domingues, M. C. D., & Sandoval, M. R. G. (2008). Environmental Assessment of and Active Tailings Pile in the State of Mexico (Central Mexico). Research Journal of Environmental and Earth Sciences, 2, 197–208.

    Article  Google Scholar 

  • Müller, G. (1979). Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umschau, 79, 778–783.

    Google Scholar 

  • Nam, S. H., Kim, M. J., Park, Y. I., & Lee, S. J. (2001). A study on various pretreatment and preparation for the determination of inorganic elements in sediment. Analytical Sciences, 17, a263–a265.

    CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Official Gazette, Republic of Serbia (1990). No. 11, p 239.

  • Radakovich, O., Roussiez, V., Ollivier, P., Ludwig, W., Grenz, C., & Probst, J.-L. (2008). Input of particulate heavy metals from rivers and associated sedimentary deposits on the Gulf of Lion continental shelf. Estuarine Coastal and Shelf Science, 77, 285–295.

    Article  Google Scholar 

  • Ren-Ying, L., Hao, Y., Zhi-Gao, Z., Jun-Jie, L., Xiao-Hua, S., & Feng, J. (2007). Fractionation of heavy metals in sediments from Dianchi Lake, China. Pedosphere, 17, 265–272.

    Article  Google Scholar 

  • Rönkkömäki, H., Pöykiö, R., Nurmesniemi, H., Popov, K., Merisalu, E., Tuomi, T., et al. (2008). Particle size distribution and dissolution properties of metals in cyclone fly ash. International Journal of Environmental Science and Technology, 5, 485–494.

    Article  Google Scholar 

  • Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): An assessment of metal pollution. Marine Pollution Bulletin, 40, 968–980.

    Article  CAS  Google Scholar 

  • Sakan, S., Đorđević, D., Manojlović, D., & Predrag, P. (2009). Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90, 3382–3390.

    Article  CAS  Google Scholar 

  • Sakan, S., Ðorđević, D., Dević, G., Relić, D., Anđelković, I., & Đuričić, J. (2011). A study of trace element contamination in river sediments in Serbia using microwave-assisted aqua regia digestion and multivariate statistical analysis. Microchemical Journal, 99, 492–502.

    Article  CAS  Google Scholar 

  • Sakan, S., Đorđević, D., Lazić, M., & Tadić, M. (2012). Assessment of arsenic and mercury contamination in the Tisa River sediments and industrial canal sediments (Danube alluvial formation), Serbia. Journal of Environmental Science and Health, Part A, 47, 109–116.

    Article  CAS  Google Scholar 

  • Samardžić, M. (2013). Temporal and spatial dispersal of pollutants in the basin of Great Morava. Ph.D thesis, University of Novi Sad, Faculty of Agriculture, Serbia.

  • Schropp, S. J., & Windom, H. L. (1988). A guide to the interpretation of metal concentrations in estuarine sediments coastal zone management section. Florida: Florida Department of Environmental Regulation.

    Google Scholar 

  • SEPA (2009). Report on the status of land in Serbia, Republic of Serbia, Ministry of Energy, Development and the Environment Agency for Environmental Protection, Belgrade, (in Serbian). www.sepa.gov.rs/download/Stanje_zemljista.pdf.

  • Silva, A., Lima, G. R. S., Alves, J. C., Santos, S. H., Garcia, A. B. G., Alves, J. P. H., et al. (2012). Evaluation of trace metal levels in surface sediments of the Sergipe River hydrographic basin, Northeast Brazil. Journal of the Brazilian Chemical Society, 23, 1669–1679.

    Article  CAS  Google Scholar 

  • Sun, Y., Wu, F., Clemens, S. C., & Oppo, D. W. (2008). Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle. Chemical Geology, 257, 240–246.

    Article  Google Scholar 

  • Swarnalatha, K., Letha, J., Ayoob, S., & Sheela, A. M. (2013). Identification of silicon (Si) as an appropriate normaliser for estimating the heavy metals enrichment. Journal of Environmental Management, 129, 54–61.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

  • Yang, Y., Chen, F., Zhang, L., Liu, J., Wu, S., & Kang, M. (2012). Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf. Marine Pollution Bulletin, 64, 1947–1955.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Education, Science and Technological Development of Serbia, Grant Nos. 172001 and 43007. In addition, we would like to thank the Republic Hydrometeorological Service of Serbia for the sediment samples. The authors are grateful to anonymous reviewers whose comments greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Sakan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakan, S., Dević, G., Relić, D. et al. Evaluation of sediment contamination with heavy metals: the importance of determining appropriate background content and suitable element for normalization. Environ Geochem Health 37, 97–113 (2015). https://doi.org/10.1007/s10653-014-9633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9633-4

Keywords

Navigation