Skip to main content
Log in

Foliar application of Zinc oxide nanoparticles alleviates cadmium toxicity in purslane by maintaining nutrients homeostasis and improving the activity of antioxidant enzymes and glyoxalase system

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Cadmium (Cd) reduces plant growth by interfering with important plant metabolic processes at the physiological, biochemical, and molecular levels. Here, the effects of foliar application of zinc oxide nanoparticles (ZnO-NPs) on growth, antioxidant enzymes, glyoxalase system, and macro- and micro-elements levels of purslane (portulaca oleracea L.) under Cd toxicity were investigated. The results revealed that Cd toxicity increased the levels of hydrogen peroxide (H2O2), methylglyoxal (MG) and malondialdehyde (MDA), resulting in oxidative stress and the induction of electrolyte leakage (EL). Cd stress enhanced the leaf concentration of Cd and declined the leaf concentrations of macro- and micro-elements, resulting in a decrease in the content of photosynthetic pigments and plant growth. However, the foliar application of ZnO-NPs improved the activity of antioxidant enzymes and the glyoxalase system and, consequently, reduced the levels of H2O2, MG, MDA, and EL in Cd-stressed plants. ZnO-NPs decreased the leaf concentration of Cd and restored the leaf concentrations of macro- and micro-elements, thereby improving photosynthetic pigments and the growth of Cd-stressed purslane plants. In general, the results revealed that the foliar application of ZnO-NPs improved the growth of purslane plants under Cd phytotoxicity by maintaining nutrient homeostasis, improving the defense mechanisms (antioxidant enzymes and glyoxalase cycle), and increasing the accumulation of proline and glutathione. Therefore, the results of the present study strongly recommend that ZnO-NPs could be used effectively in the cultivation of plants in areas contaminated with toxic Cd metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ahmad P, Alyemeni MN, Al-Huqail AA, Alqahtani MA, Wijaya L, Ashraf M, Kaya C, Bajguz A (2020) Zinc oxide nanoparticles application alleviates arsenic (As) toxicity in soybean plants by restricting the uptake of as and modulating key biochemical attributes, antioxidant enzymes, ascorbate-glutathione cycle and glyoxalase system. Plants (Basel) 9(7):825

    Article  CAS  Google Scholar 

  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015) Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS ONE 10:1–23

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  Google Scholar 

  • Fagioni M, D’Amici GM, Timperio AM, Zolla L (2009) Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment. J Proteome Res 8(1):310–326

    Article  CAS  Google Scholar 

  • Faizan M, Faraz A, Mir AR, Hayat S (2021) Role of zinc oxide nanoparticles in countering negative effects generated by cadmium in Lycopersicon esculentum. J Plant Growth Regul 40:101–115

    Article  CAS  Google Scholar 

  • Gerami M, Ghorbani A, Karimi S (2018) Role of salicylic acid pretreatment in alleviating cadmium-induced toxicity in Salvia officinalis L. Iranian. J Plant Biol 10(1):81–95

    Google Scholar 

  • Ghasemi-Omran VO, Ghorbani A, Sajjadi-Otaghsara SA (2021) Melatonin alleviates NaCl-induced damage by regulating ionic homeostasis, antioxidant system, redox homeostasis, and expression of steviol glycosides-related biosynthetic genes in in vitro cultured Stevia rebaudiana Bertoni. In Vitro Cell Dev Biol- Plant 57:319–331

    Article  CAS  Google Scholar 

  • Ghorbani A, Zarinkamar F, Fallah A (2009) The effect of cold stress on the morphologic and physiologic characters of tow rice varieties in seedling stage. J Crop Breed 1:50–66

    Google Scholar 

  • Ghorbani A, Zarinkamar F, Fallah A (2011) Effect of cold stress on the anatomy and morphology of the tolerant and sensitive cultivars of rice during germination. J Cell Tissue 2(3):235–244

    Google Scholar 

  • Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H (2018b) Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biol 20:729–736

    Article  CAS  Google Scholar 

  • Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H (2018a) Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russ J Plant Physiol 65:898–907

    Article  CAS  Google Scholar 

  • Ghorbani A, Razavi SM, Ghasemi Omran V, Pirdeshti H (2019b) Effects of endophyte fungi symbiosis on some physiological parameters of tomato plants under 10 day long salinity stress. J Plant Proc Func 7(27):193–208

    Google Scholar 

  • Ghorbani A, Ghasemi Omran VO, Razavi SM, Pirdashti H, Ranjbar M (2019a) Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status. Plant Cell Rep 38:1151–1163

    Article  CAS  Google Scholar 

  • Ghorbani A, Pishkar L, Roodbari N, Pehlivan N, Wu C (2021) Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration. Plant Physiol Biochem 167:337–348

    Article  CAS  Google Scholar 

  • Ghorbani A, Tafteh M, Roudbari N, Pishkar L, Zhang W, Wu C (2020) Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots. Ecotoxicol Environ Saf 209:111793

    Article  CAS  Google Scholar 

  • Ghorbani A, Pishkar L, Roodbari N, Ali Tavakoli S, Moein Jahromi E, Chu W (2022) Nitrate reductase is needed for methyl jasmonate-mediated arsenic toxicity tolerance of rice by modulating the antioxidant defense system, glyoxalase system and arsenic sequestration mechanism. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10616-2

  • Hasan SA, Hayat S, Ahmad A (2009) Screening of tomato (Lycopersicon esculentum) cultivars against cadmium through shotgun approach. J Plant Inter 4:187–201

    CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143(3):1704–1721

    Article  CAS  Google Scholar 

  • Hodges DM, Deiong JM, Forney CF, Prange R (1999) Improving the thiobarbituric acid-recative–substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Huo Y, Wang M, Wei Y, Xia Z (2016) Overexpression of the maize psbA gene enhances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in tobacco. Front Plant Sci 6:1223

    Article  Google Scholar 

  • Hussain A, Ali S, Rizwan M, Rehman MZ, Javed MR, Imran M, Chatha SAS, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    Article  CAS  Google Scholar 

  • Jackson ML (1967) Soil chemical analysis, 1st edn. Prentice Hall of India Pvt. Ltd, New Delhi, p 144–197

    Google Scholar 

  • Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FNAM, O’Halloran J, Jansen MAK (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiol Plant https://doi.org/10.1111/ppl.13012

  • Kitson R, Mellon M (1944) Colorimetric determination of phosphorus as molybdivanado phosphonic acid. Ind Eng Chem Res 16:379–383

    CAS  Google Scholar 

  • Kolenčík M, Ernst D, Komár M, Urík M, Šebesta M, Dobročka E, Černý I, Illa R, Kanike R, Qian Y, Feng H, Orlová D, Kratošová G (2019) Effect of Foliar Spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of Foxtail Millet (Setaria italica L.) under Field Conditions. Nanomaterials (Basel) 9(11):1559

    Article  CAS  Google Scholar 

  • Liu Y, Wand X, Zeng G, Qui D, Gu J, Zhou M, Chau L (2007) Cadmium induced oxidative stress and response of the ascorbate glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere 69:99–107

    Article  CAS  Google Scholar 

  • Llamas A, Ullrich CI, Sanz A2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots. Plant Soil 219(1–2):21–28

  • Lu Y, Wang, Qf Li,J, Xiong J, Zhou L, He SL, Zhang JQ, Chen ZA, He SG, Liu H (2019) Effects of exogenous sulfur on alleviating cadmium stress in tartary buckwheat. Sci Rep 9:7397

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide scavenged by ascor- bate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nolan AL, McLaughlin MJ, Mason SD (2003) Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using donnan dialysis. Environ Sci Technol 37(1):90–98

    Article  CAS  Google Scholar 

  • Palusińska M, Barabasz A, Kozak K, Papierniak A, Maślińska K, Antosiewicz DM (2020) Zn/Cd status-dependent accumulation of Zn and Cd in root parts in tobacco is accompanied by specific expression of ZIP genes. BMC Plant Biol 20:37

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548

    Article  CAS  Google Scholar 

  • Principato GB, Rosi G, Talesa V (1987) Purification and characterization of two forms of glyoxalase II from the liver and brain of Wistar rats. Biochim Biophys Acta 911(3):349–355

    Article  CAS  Google Scholar 

  • Priyanka N, Geetha N, Manish T, Sahi SV, Venkatachalam P (2021) Zinc oxide nanocatalyst mediates cadmium and lead toxicity tolerance mechanism by differential regulation of photosynthetic machinery and antioxidant enzymes level in cotton seedlings. Toxicol Rep 8:295–302

    Article  CAS  Google Scholar 

  • Ramezani M, Enayati M, Ramezani M, Ghorbani A (2021) A study of different strategical views into heavy metal (oid) removal in the environment. Arab J Geosci 21:1–16

    Google Scholar 

  • Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, Biochemistry of Nanoparticles, and Their Role in Antioxidant Defense System in Plants. In Nanotechnology and Plant Sciences; Springer International Publishing: Cham, Switzerland, 1–17.

  • Rizwan M, Ali S, Abbas T, Rehman MZ, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Zia ur Rehman M, Waris AA (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    Article  CAS  Google Scholar 

  • Santhoshkumar J, Kumar SV, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour-Effic Technol 3:459–465

    Google Scholar 

  • Sharifan H, Moore J, Ma X (2020) Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicol Environ Saf 191:110177

    Article  CAS  Google Scholar 

  • Singh J, Kumar S, Alok A, Upadhyay SK, Rawat M, Tsang DCW, Bolan N, Kim KH (2019) The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J Clean Prod 214:1061–1070

    Article  CAS  Google Scholar 

  • Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58:595–604

    Article  CAS  Google Scholar 

  • Stroin´ski A (1999) Some physiological and biochemical aspects of plant resistance to cadmium effect. I. Antioxidative system. Acta Physiol Plant 21(2):175–188

    Article  Google Scholar 

  • Sturikova H, Krystofova O, Huska D, Adam V (2018) Zinc, zinc nanoparticles and plants. J Hazard Mater 349:101–110

    Article  CAS  Google Scholar 

  • Suliman AE, Tang YW, Xu L (2007) Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells. Sol Energy Mater Sol Cells 91:1658–1662

    Article  CAS  Google Scholar 

  • Sun JY, Shen ZG (2007) Effects of Cd stress on photosynthetic characteristics and nutrient uptake of cabbages with different Cd-tolerance. Chinese. J Appl Ecol 18(11):2605–2610

    CAS  Google Scholar 

  • di Toppi SL, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130

    Article  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiol Biochem 110:59–69

    Article  CAS  Google Scholar 

  • Wang Y, Jiang X, Li K, Wu M, Zhang R, Zhang L, Chen G (2014) Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals 27:389–401

    Article  CAS  Google Scholar 

  • Wild R, Ooi L, Srikanth V, Münch G (2012) A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl-L-cysteine assay. Anal Bioanal Chem 403:2577–2581

    Article  CAS  Google Scholar 

  • Wu F, Fang Q, Yan S, Pan L, Tang X, Ye W (2020) Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake. Environ Sci Pollut Res 27:26974–26981

    Article  CAS  Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30(9):955–963

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SY and LP conceived the idea and wrote the manuscript. LP and AI corrected the language of the manuscript. SY and LP conducted the literature survey.

Corresponding author

Correspondence to Leila Pishkar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishkar, L., Yousefi, S. & Iranbakhsh, A. Foliar application of Zinc oxide nanoparticles alleviates cadmium toxicity in purslane by maintaining nutrients homeostasis and improving the activity of antioxidant enzymes and glyoxalase system. Ecotoxicology 31, 667–678 (2022). https://doi.org/10.1007/s10646-022-02533-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-022-02533-7

Keywords

Navigation