Skip to main content

Advertisement

Log in

Chlorothalonil tolerance of indole producing bacteria associated to wheat (Triticum turgidum L.) rhizosphere in the Yaqui Valley, Mexico

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Chlorothalonil is a commonly used fungicide to control the karnal bunt caused by Tilletia indica Mitra in wheat production from the Yaqui Valley, Mexico. Here, the effect of Chlorothalonil on the growth of 132 bacterial strains associated with wheat rhizosphere from the Yaqui Valley was evaluated, as well as their ability to produce indoles. Thirty-three percent of the evaluated strains were inhibited by Chlorothalonil, being Bacillus and Paenibacillus the most inhibited genera, observing an inhibition >50% of their strains. In addition, 49% of the inhibited strains showed the ability to produce indoles (>5 μg/mL), where the genus Bacillus was the most abundant (80%). The remaining strains (67%) were tolerant to the evaluated fungicide, but only 37% of those showed the ability to produce indoles, which could be considered as Plant Growth Promoting Rhizobacteria (PGPR). These results showed that Chlorothalonil is not only an antifungal compound but also inhibits the growth of bacterial strains with the ability to produce indoles. Thus, the intensive application of fungicides to agro-systems needs more validation in order to develop sustainable agricultural practices for food production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott L (2015) Soils are alive, the complete soil health reference for farmers, consultants and researchers. http://www.soilhealth.com/soils-are-alive/. Accessed 24 Feb 2018

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World J Microbiol Biotechnol 25(3):519

    Article  CAS  Google Scholar 

  • Arendt EK, Zannini E (2013) Cereal grains for the food and beverage industries, 1st edn, Woodhead Publishing Limited, Cambridge

  • Asael RGH, Guevara RG, de Jesús RGS, Angélica FPA (2018) Antifungal activity of Mexican endemic plants on agricultural phytopathogens: a review. In: 2018 XIV International Engineering Congress (CONIIN). IEEE, Queretaro, México, pp 1–11

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  Google Scholar 

  • Awika JM (2011) Major cereal grains production and use around the world. In: Awika JM, Piironen V, Bean S (eds) Advances in Cereal Science: Implications to food processing and health promotion. ACS Symposium Series, American Chemical Society, Washington, pp 1–13

  • Baćmaga M, Wyszkowska J, Kucharski J (2018) The influence of chlorothalonil on the activity of soil microorganisms and enzymes. Ecotoxicology 27(9):1188–1202

    Article  CAS  Google Scholar 

  • Bonilla R, Garrido M, Obando M, Rivera D (2011) Effect of agrochemicals in cotton seed pellets on Monibac® biofertiliser based on Azotobacter chroococcum. Rev Bio Agro 9(2):130–138

    Google Scholar 

  • Borlaug NE (1968) Wheat breeding and its impact on world food supply (Vol. 1335). In: Finley KW, Sheppard KW (eds) Proceedings of 3rd International Wheat Genetics Symposium. Canberra, pp 1–36

  • Bose A, Kher MM, Nataraj M, Keharia H (2016) Phytostimulatory effect of indole-3-acetic acid by Enterobacter cloacae SN19 isolated from Teramnus labialis (L. f.) Spreng rhizosphere. Biocatal Agric Biotechnol 6:128–137

    Article  Google Scholar 

  • Brenner K, You L, Arnold F (2008) Engineering microbial consortia: a new frontier in synthetic biology. In: Trends in Biotechnology 26(9):483–489

    CAS  Google Scholar 

  • Calvo P, Watts DB, Kloepper JW, Torbert HA (2017) Effect of microbial‐based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). J Plant Nutr Soil Sci 180(1):56–70

    Article  CAS  Google Scholar 

  • CIMMYT (2017) Wheat atlas by CIMMYT. CIMMYT. http://wheatatlas.org/country/MEX/?AspxAutoDetectCookieSupport=1. Accessed 17 Jan 2018

  • Chagas LFB, da Luz Costa J, dos Santos GR, Chagas Jr AF, de Oliveira LA, de Oliveira AG, da Silva ALL (2015) Production of indole-3-acetic acid by Bacillus isolated from different soils. Bulg. J Agric Sci 21(2):282–287

    Google Scholar 

  • Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46(3):186–195

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  Google Scholar 

  • Cortés JM, Troyo E, Murillo B, García JL, Garatuza J, Suh S (2009) Índices de calidad del agua del acuífero del valle del Yaqui, Sonora. Terra latinoamericana 27(2):133–141

    Google Scholar 

  • Dean A (2012) A brief history of the yaqui valley. In: Matson PA (ed) Seeds of sustainability: lessons from the birthplace of the green revolution in agriculture seeds of sustainability. Island Press, Washington, DC, pp 13–27

  • de los Santos-Villalobos S, Barrera-Galicia GC, Miranda-Salcedo MA, Peña-Cabriales JJ (2012) Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World J Microbiol Biotechnol 28:2615–2623

    Article  Google Scholar 

  • de los Santos-Villalobos S, Folter S, Délano J, Gómez M, Guzmán D, Peña J (2013) Growth promotion and flowering induction in mango (Mangifera indica L. cv” ataulfo”) trees by Burkholderia and Rhizobium inoculation: Morphometric, biochemical, and molecular events. J Plan Growth Regul 32:615–627

    Article  CAS  Google Scholar 

  • de los Santos-Villalobos S, Kremer JM, Parra FI, Hayano AC, García LF, Gunturu SK, Tiedje JM, He SY, Peña JJ (2018) Draft genome of the fungicidal biological control agent Burkholderia anthina strain XXVI. Arch Microbiol. https://doi.org/10.1007/s00203-018-1490-6

  • de los Santos-Villalobos S, Parra FI, Herrera A, Valenzuela B, Estrada JC (2018) Colección de microorganismos edáficos y endófitos nativos para contribuira la seguridad alimentaria nacional Rev Mex Cienc Agríc 9(1):191–202

    Google Scholar 

  • Gill HK, Garg H (2014) Pesticides: environmental impacts and management strategies. In: Solenski S, Larramenday ML (eds) Pesticides-Toxic Aspects. 1st ed. InTech, Rijeka, pp 187–230

  • Glickman E, Dessaux Y (1995) A critical examination of the specificity of salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Envrion Microbiol 61(2):793–796

  • Gliessman SR (2002) Agroecología: procesos ecológicos en agricultura sostenible. CATIE, Turrialba

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robison S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  CAS  Google Scholar 

  • Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15(1):203

    Article  Google Scholar 

  • Greene SA, Pohanish R (2005) Sittig’s handbook of pesticides and agricultural chemicals. William Andrew Publishing, Nueva York, EUA

  • Haldar S, Sengupta S (2016) Microbial ecology at rhizosphere: Bioengineering and Future Prospective. In: Choudhary DK, Varma A, Tuteja N (eds). Plant-Microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 63–96

  • Hassan T, Bano A (2015) The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. J Soil Sci Plant Nutr 15(1):190–201

    Google Scholar 

  • Hontzeas N, Hontzeas CE, Glick BR (2006) Reaction mechanisms of the bacterial enzyme 1-aminocyclopropane- 1-carboxylate deaminase. Biotechnol Adv 24:420–426

    Article  CAS  Google Scholar 

  • Joshi P, Bhatt AB (2011) Diversity and function of plant growth promoting rhizobacteria associated with wheat rhizosphere in North Himalayan region. Int J Environ Sci 1(6):1135

    Google Scholar 

  • Khan AL, Halo BA, Elyassi A, Ali S, Al K, Hussain J, Lee IJ (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64

    Article  CAS  Google Scholar 

  • Klodka D, Nowak J (2004) Influence of combined fungicides and adjuvants application on enzymatic activity and ATP content in soil. Electron J Pol Agric Univ 7(1):01

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability. J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Kumar S, Mukerji KG, Lai R (1996) Molecular aspects of pesticide degradation by microorganisms. Crit Rev Microbiol 22(1):1–26

    Article  CAS  Google Scholar 

  • Lara C, Oviedo L, Betancur C (2011) Strain native with potential in the acetic acid production indol to improve the grass. Zootecnia Tropical 29(2):187–194

    Google Scholar 

  • López, M 2015. Manual técnico de muestreo de productos agrícolas y fuentes de agua para la determinación de contaminantes microbiológicos. http://www.cesavejal.org.mx/divulgacion/Manual%20Digital%202014/17.1%20manual_MUESTREO_MICROBIOLOGICO_CORREGIDO1%20(3)(1)%20(2).pdf. Accessed 4 Nov 2015

  • Ludwig J (2015) Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. J Plant Physiol 172:4–12

    Article  CAS  Google Scholar 

  • Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17(1):25–32

    Article  CAS  Google Scholar 

  • Malusà E, Pinzari F, Canfora L (2016) Efficacy of biofertilizers: challenges to improve crop production. In: Singh DP, Singh HB, Prabha R (eds). Microbial inoculants in sustainable agricultural productivity, Vol. 2: functional applications. Springer, New Delhi, pp 17–40

  • Masciarelli O, Urbani L, Reinoso H, Luna V (2013) Alternative mechanism for the evaluation of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings. J Microbiol 51(5):590–597

    Article  CAS  Google Scholar 

  • Matson P, Jewett P (2012) Ecosystems and land-use change in the yaqui valley: does agricultural intensification “Spare Land for Nature”?. In: Matson PA (ed) Seeds of sustainability: Lessons from the birthplace of the green revolution in agriculture seeds of sustainability. Island Press, Washington, DC, pp 47–62

  • Núñez DB, Liriano R, Pérez Y, Placeres I, Sianeh G (2017) Response of carrot (Daucus carota L.) to the application of native microorganisms under organoponic conditions. Centro Agrícola 44(2):29–35

    Google Scholar 

  • Ochoa DC, Montoya A (2010) Microbial consortia: a biological metaphor applied to enterprise association in agricultural production chains. Rev fac cienc econ 18(2):55–74

    Article  Google Scholar 

  • Onofre J, Hernández I, Girard L, Caballero J (2009) ACC (1-Aminocyclopropane-1- Carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75(20):6581–6590

    Article  CAS  Google Scholar 

  • Orberá T, Serrat M, González Z (2009) Potentials of Aerobic Endospore Forming Bacteria (AEFB) for biocontrol in ornamental plants. Fitosanidad 13(2):95–100

    Google Scholar 

  • Pedraza RO, Teixeira KR, Fernández A, García de Salamone I, Baca BE, Azcón R, Baldani VD, Bonilla R (2010) Microorganisms that enhance plant growth and soil quality. Review Corpoica cienc tecnol agropecu 11(2):155–164

    Article  Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 13(1):63–77

    Article  CAS  Google Scholar 

  • Prescott JM, Burnett PA, Saari EE, Ransom JK, Bowman J, De Milliano W, Singh RP, Singh RP (1986) Enfermedades y plagas del trigo: una guía para su identificación en el campo. CIMMYT, Mexico

  • Rawat S, Izhari A, Khan A (2011) Bacterial diversity in wheat rhizosphere and their characterization. Adv Appl Sci Res 2:351–356

    Google Scholar 

  • Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol 190(21):7200–7208

    Article  CAS  Google Scholar 

  • Saini S, Verma A, Kumar A, Prakash A, Sharma SK, Ramesh A, Johri BN (2016) Identification and Characterization of antifungal metabolite producing Pseudomonas protegens strain BNJ-SS-45 isolated from rhizosphere of wheat crop (Triticum aestivum L.). Int J Appl Pure Sci Agric 2(6):69–76

    Google Scholar 

  • Sánchez DB, Gómez RM, Garrido MF, Bonilla RR (2012) Inoculation with plant growth promoting bacteria on tomato under greenhouse conditions. Rev Mex Cienc Agríc 3(7):1401–1415

    Google Scholar 

  • Santoyo G, Moreno G, del Carmen Orozco M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  Google Scholar 

  • Sasmal J, Weikard HP (2013) Soil degradation, policy intervention and sustainable agricultural growth. Quarterly Journal of International Agriculture 52(4):309–328

    Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4(4):519–537

    Article  Google Scholar 

  • Scribner EA, Orlando JL, Battaglin WA, Sandstrom MW, Kuivila KM, Meyer MT (2006) Results of analyses of the fungicide chlorothalonil, its degradation products, and other selected pesticides at 22 surface-water. U.S. Geological Survey, Reston

  • SAGARPA (2017) Productores de trigo obtienen rendimiento de 9 toneladas. http://www.sicde.gob.mx/portal/bin/nota.php?accion=buscar¬aId=915414826576843306f86e. Accessed 5 Feb 2019

  • SAGARPA (2018) Boletín mensual de la producción Trigo grano. https://www.gob.mx/cms/uploads/attachment/file/412979/Bolet_n_mensual_de_la_producci_n_de_trigo_octubre_2018.pdf. Accessed 9 Feb 2019

  • Singh BK, Walker A, Wright DJ (2002) Degradation of chlorpyrifos, fenamiphos, and chlorothalonil alone and in combination and their effects on soil microbial activity. Environ Toxicol Chem 21(12):2600–2605

    Article  CAS  Google Scholar 

  • Šramková Z, Gregová E, Šturdík E (2009) Chemical composition and nutritional quality of wheat grain. Acta Chim Slov 2(1):115–138

    Google Scholar 

  • Valenzuela-Aragon B, Parra-Cota F, Santoyo G, Arellano G, de los Santos-Villalobos S (2018) Plant-Assisted Selection: a promising alternative for in vivo identification of Wheat (Triticum turgidum L. subsp. Durum) growth promoting bacteria. Plant and soil 435:367–384. https://doi.org/10.1007/s11104-018-03901-1

    Article  CAS  Google Scholar 

  • Vega P, Canchignia H, González M, Seeger M (2016) Biosíntesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacterias. Cultivos Tropicales 37:33–39

    Google Scholar 

  • Velasco JE, Pérez DJ, Rajaram S, Balbuena A, Albarrán M, González A (2012) Análisis de 20 genotipos de trigo harinero en el Valle del Yaqui, Sonora. Rev Mex De Cienc Agric 3(8):1521–1534

    Google Scholar 

  • Verma SK, Kingsley K, Bergen M, English C, Elmore M, Kharwar RN, White JF (2018) Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant Soil 422(1–2):223–238

    Article  CAS  Google Scholar 

  • Villarreal MF, Villa ED, Cira LA, Estrada MI, Parra FI, de los Santos S (2018) The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Rev Mex Fitopatol 36(1):95–130

  • Weisburg WG, Barns S, Pelletier D, Lane DJ (1991) 6S Ribosomal DNA Amplification for Phylogenetic Study. J Bacteriol 173(2):697–703

    Article  CAS  Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    Article  CAS  Google Scholar 

  • Xuan W, Band LR, Kumpf RP, Van Damme D, Parizot B, De Rop G, Opdenacker D, Möller BK, Skorzinski N, Njo MF, De Rybel B, Audenaert D, Nowack MK, Vanneste S, Beeckman T (2016) Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science 351(6271):384–387

    Article  CAS  Google Scholar 

  • Yang C, Hamel C, Vujanovic V, Gan Y (2011) Fungicide: modes of action and possible impact on nontarget microorganisms. ISRN Ecology. https://doi.org/10.5402/2011/130289

  • Yu YL, Shan M, Fang H, Wang X, Chu XQ (2006) Responses of soil microorganisms and enzymes to repeated applications of chlorothalonil. J Agric Food Chem 54(26):10070–10075

    Article  CAS  Google Scholar 

  • Zhang L, Yan C, Guo Q, Zhang J, Ruiz J (2018) The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. Int J Low Carbon Tech 13(4):338–352

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support by all team members of Laboratorio de Biotecnología del Recurso Microbiano (ITSON) for the support in the present work, and the anonymous reviewers and Editor for their technical review of earlier draft of the manuscript.

Funding

This study was funded by Cátedras CONACyT Program (Project 1774, “Alternativas agrobiotecnológicas para incrementar la competitividad del cultivo de trigo en el Valle del Yaqui: desde su ecología microbiana hasta su adaptabilidad al cambio climático”), and CONACyT (Project 257246, “Interacción trigo x microorganismos promotores del crecimiento vegetal: identificando genes con potencial agro-biotecnológico”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio de los Santos Villalobos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz Rodríguez, A.M., Parra Cota, F.I., Santoyo, G. et al. Chlorothalonil tolerance of indole producing bacteria associated to wheat (Triticum turgidum L.) rhizosphere in the Yaqui Valley, Mexico. Ecotoxicology 28, 569–577 (2019). https://doi.org/10.1007/s10646-019-02053-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02053-x

Keywords

Navigation