Skip to main content
Log in

Effects of prey size structure and turbulence on feeding and growth of anchovy larvae

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Foraging processes in plankton and planktivorous fish are constrained by relative prey and predator size and therefore, these are important variables to include in a foraging model. The distribution of prey biomass across different size classes can be characterized by a size spectrum slope. We present a foraging model for anchovy larvae including the most relevant processes such as prey encounter, capture- and pursuit success, all influenced by light, turbulence and prey characteristics. We modelled ingestion rates and specific growth rate by coupling the foraging model with an existing bioenergetic model, and performed a sensitivity analysis of prey ingestion in turbulent environments assuming either hemispherical or conical perceptive volume. Our results suggest that turbulence has no positive effect because of the low capture ability, small prey size and small visual volume for anchovy larvae. The predicted ingestion is too low to sustain the growth potential of larvae when assuming conical perceptive volume even under prey densities substantially higher than normally found in the field. Ingestion rate is sensitive to the total biomass and the slope of the prey size spectra, specifically because it determines the abundance of prey around the optimal size for the larvae. The model also suggests that small larvae benefit from a prey size structure with steep prey size-spectra slope while a large larva benefit from less steep slopes. The model can act as a link between size-spectra measurements from the field and the foraging conditions of larval anchovies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aksnes DL, Giske J (1993) A theoretical model of aquatic visual feeding. Ecol Model 67(2–4):233–250

    Article  Google Scholar 

  • Aksnes DL, Utne ACW (1997) A revised model of visual range in fish. Sarsia 82(2):137–147

    Google Scholar 

  • Ashjian CJ, Davis CS, Gallager SM, Alatalo P (2001) Distribution of plankton, particles, and hydrographic features across Georges Bank described using the Video Plankton Recorder. Deep-Sea Res II 48(1–3):245–282

    Article  Google Scholar 

  • Beyer JE (1980) Feeding success of clupeoid fish larvae and stochastic thinking. Dana 1:65–91

    Google Scholar 

  • Blanco JM, Echevarria F, Garcia CM (1994) Dealing with size-spectra: some conceptual and mathematical problems. Sci Mar 58:17–29

    Google Scholar 

  • Caparroy P, Thygesen UH, Visser AW (2000) Modelling the attack success of planktonic predators: patterns and mechanisms of prey size selectivity. J Plankton Res 22(10):1871

    Article  Google Scholar 

  • Catalán IA, Folkvord A, Palomera I, Quílez-Badía G, Kallianoti F, Tselepides A, Kallianotis A (2010) Growth and feeding patterns of European anchovy (Engraulis encrasicolus) early life stages in the Aegean Sea (NE Mediterranean). Estuar Coast Shelf Sci 86(2):299–312

    Article  Google Scholar 

  • Champalbert G, Gaudy R, Kerambrun P (1973) Résultats préliminaires sur la composition chimique élémentaire comparée en carbone, hydrogène et azote de quelques espèces de copépodes récoltés dans le Golfe de Marseille. C R Acad Sci Paris (serie D) 277:529–532

    CAS  Google Scholar 

  • Chesney EJ (2008) Foraging behavior of bay anchovy larvae, Anchoa mitchilli. J Exp Mar Biol Ecol 362(2):117–124

    Article  Google Scholar 

  • Clemmesen C, Sanchez R, Rossi-Wongtschowski C (1997) A regional comparison of the nutritional condition of SW Atlantic anchovy larvae, Engraulis anchoita, based on RNA/DNA ratios. Arch Fish Mar Res 45:17–43

    Google Scholar 

  • Conway DVP, Coombs SH, Smith C (1998) Feeding of anchovy Engraulis encrasicolus larvae in the northwestern Adriatic Sea in response to changing hydrobiological conditions. Mar Ecol Prog Ser 175:35–49

    Article  Google Scholar 

  • Cury P, Bakun A, Crawford R, Jarre A, Quinones R, Shannon L, Verheye H (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57(3):603

    Article  Google Scholar 

  • Daewel U, Peck MA, Schrum C, StJohn MA (2008a) How best to include the effects of climate-driven forcing on prey fields in larval fish individual-based models. J Plankton Res 30(1):1

    Article  Google Scholar 

  • Daewel UTE, Peck MA, Kuhn W, St John MA, Alekseeva I, Schrum C (2008b) Coupling ecosystem and individual-based models to simulate the influence of environmental variability on potential growth and survival of larval sprat (Sprattus sprattus L.) in the North Sea. Fish Oceanogr 17(5):333–351

    Article  Google Scholar 

  • Davis CS, Thwaites FT, Gallager SM, Hu Q (2005) A three-axis fast-tow digital Video Plankton Recorder for rapid surveys of plankton taxa and hydrography. Limnol Oceanogr Methods 2:59–74

    Article  Google Scholar 

  • de Figueiredo GM, Nash RDM, Montagnes DJS (2005) The role of the generally unrecognised microprey source as food for larval fish in the Irish Sea. Mar Biol 148(2):395–404

    Article  Google Scholar 

  • de Figueiredo GM, Nash RDM, Montagnes DJS (2007) Do protozoa contribute significantly to the diet of larval fish in the Irish Sea? J Mar Biol Assoc UK 87(04):843–850

    Article  Google Scholar 

  • Fiksen Ø, Folkvord A (1999) Modelling growth and ingestion processes in herring Clupea harengus larvae. Mar Ecol Prog Ser 184:273–289

    Article  Google Scholar 

  • Fiksen Ø, Jørgensen C (2011) Model of optimal behaviour in fish larvae predicts that food availability determines survival, but not growth. Mar Ecol Prog Ser 432:207–219

    Article  Google Scholar 

  • Fiksen Ø, MacKenzie BR (2002) Process-based models of feeding and prey selection in larval fish. Mar Ecol Prog Ser 243:151–164

    Article  Google Scholar 

  • Fiksen Ø, Utne ACW, Aksnes DL, Eiane K, Helvik JV, Sundby S (1998) Modelling the influence of light, turbulence and ontogeny on ingestion rates in larval cod and herring. Fish Oceanogr 7(3–4):355–363

    Article  Google Scholar 

  • Galbraith PS, Browman HI, Racca RG, Skiftesvik AB, Saint-Pierre JF (2004) Effect of turbulence on the energetics of foraging in Atlantic cod Gadus morhua larvae. Mar Ecol Prog Ser 281:241–257

    Article  Google Scholar 

  • García A, Palomera I (1996) Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean basin. Sci Mar 60:155–166

    Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz S, Huse G (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198(1–2):115–126

    Article  Google Scholar 

  • Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol: a review and first update. Ecol Model 221(23):2760–2768

    Article  Google Scholar 

  • Grosjean P, Picheral M, Warembourg C, Gorsky G (2004) Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system. ICES J Mar Sci 61(4):518

    Article  Google Scholar 

  • Heath MR, Gallego A (1998) Bio-physical modelling of the early life stages of haddock, Melanogrammus aeglefinus, in the North Sea. Fish Oceanogr 7(2):110–125

    Article  Google Scholar 

  • Hermann AJ, Hinckley S, Megrey BA, Napp JM (2001) Applied and theoretical considerations for constructing spatially explicit individual-based models of marine larval fish that include multiple trophic levels. ICES J Mar Sci 58(5):1030

    Article  Google Scholar 

  • Hinckley S, Hermann AJ, Mier KL, Megrey BA (2001) Importance of spawning location and timing to successful transport to nursery areas: a simulation study of Gulf of Alaska walleye pollock. ICES J Mar Sci 58(5):1042

    Article  Google Scholar 

  • Hinrichsen HH, Moellmann C, Voss R, Koester FW, Kornilovs G (2002) Biophysical modeling of larval Baltic cod (Gadus morhua) growth and survival. Can J Fish Aquat Sci 59(12):1858–1873

    Article  Google Scholar 

  • Holling CS (1966) The functional response of invertebrate predators to prey density. Entomol Soc Can 48:1–86

    Article  Google Scholar 

  • Hunter JR (1972) Swimming and feeding behavior of larval anchovy Engraulis mordax. Fish Bull 70:821–834

    Google Scholar 

  • Hunter JR (1977) Behavior and survival of northern anchovy Engraulis mordax larvae. CalCOFI Rep 19:138–146

    Google Scholar 

  • Hunter JR (1980) The feeding behavior and ecology of marine fish larvae. In: Bardach JE, Magnuson JJ, May RC, Reinhart JM (eds) Fish behavior and its use in the capture and culture of fishes. ICLARM Conf. Proc. 5 Internat’l. Center for the Living Aquatic Resources Mgmt, Manila, Philippines. pp 287–330

  • Irigoien X, Cotano U, Boyra G, Santos M, Alvarez P, Otheguy P, Etxebeste E, Uriarte A, Ferrer L, Ibaibarriaga L (2008) From egg to juvenile in the Bay of Biscay: spatial patterns of anchovy (Engraulis encrasicolus) recruitment in a non-upwelling region. Fish Oceanogr 17(6):446–462

    Article  Google Scholar 

  • Irigoien X, Fernandes JA, Grosjean P, Denis K, Albaina A, Santos M (2009) Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment. J Plankton Res 31(1):1–17

    Article  Google Scholar 

  • Kiørboe T, MacKenzie B (1995) Turbulence-enhanced prey encounter rates in larval fish: effects of spatial scale, larval behaviour and size. J Plankton Res 17(12):2319–2331

    Article  Google Scholar 

  • Kiørboe T, Visser AW (1999) Predator and prey perception in copepods due to hydromechanical signals. Mar Ecol Prog Ser 179:81–95

    Article  Google Scholar 

  • Knutsen JA (1992) Feeding behaviour of North Sea turbot (Scophthalmus maximus) and Dover sole (Solea solea) larvae elicited by chemical stimuli. Mar Biol 113(4):543–548

    Article  CAS  Google Scholar 

  • Kolkovski S, Arieli A, Tandler A (1997) Visual and chemical cues stimulate microdiet ingestion in sea bream larvae. Aquac Int 5(6):527–536

    Article  Google Scholar 

  • Kristiansen T, Fiksen Ø, Folkvord A (2007) Modelling feeding, growth and habitat selection in larval cod: observations and model predictions in a macrocosm environment. Can J Fish Aquat Sci 64:136–151

    Article  Google Scholar 

  • Kristiansen T, Vikebø F, Sundby S, Huse G, Fiksen Ø (2008) Modeling growth of larval cod (Gadus morhua) in large-scale seasonal and latitudinal environmental gradients. Deep-Sea Res II 56(21–22):2001–2011

    Google Scholar 

  • Kristiansen T, Lough RG, Werner FE, Broughton EA, Buckley LJ (2009a) Individual-based modeling of feeding ecology and prey selection of larval cod on Georges Bank. Mar Ecol Prog Ser 376:227–243

    Article  Google Scholar 

  • Kristiansen T, Vikebø F, Sundby S, Huse G, Fiksen Ø (2009b) Modeling growth of larval cod (Gadus morhua) in large-scale seasonal and latitudinal environmental gradients. Deep-Sea Res II 56(21–22):2001–2011

    Article  Google Scholar 

  • Kühn W, Peck MA, Hinrichsen HH, Daewel U, Moll A, Pohlmann T, Stegert C, Tamm S (2008) Defining habitats suitable for larval fish in the German Bight (southern North Sea): an IBM approach using spatially-and temporally-resolved, size-structured prey fields. J Mar Syst 74(1–2):329–342

    Article  Google Scholar 

  • Lasker R (1975) Field criteria for survival of anchovy larvae: the relation between inshore chlorophyll maximum layers and successful first feeding. Fish Bull 73(3):453–462

    Google Scholar 

  • Letcher BH, Rice JA, Crowder LB, Rose KA (1996) Variability in survival of larval fish: disentangling components with a generalized individual-based model. Can J Fish Aquat Sci 53(4):787–801

    Article  Google Scholar 

  • Lewis DM, Bala SI (2006) Plankton predation rates in turbulence: a study of the limitations imposed on a predator with a non-spherical field of sensory perception. J Theor Biol 242(1):44–61

    Article  PubMed  CAS  Google Scholar 

  • Lough R, Buckley L, Werner F, Quinlan J, Edwards K (2005) A general biophysical model of larval cod (Gadus morhua) growth applied to populations on Georges Bank. Fish Oceanogr 14(4):241–262

    Article  Google Scholar 

  • MacKenzie BR (2000) Turbulence, larval fish ecology and fisheries recruitment: a review of field studies. Oceanol Acta 23(4):357–376

    Article  Google Scholar 

  • MacKenzie BR, Kiørboe T (1995) Encounter rates and swimming behavior of pause-travel and cruise larval fish predators in calm and turbulent laboratory environments. Limnol Oceanogr: 1278–1289

  • MacKenzie BR, Kiørboe T (2000) Larval fish feeding and turbulence: a case for the downside. Limnol Oceanogr 45(1):1–10

    Article  Google Scholar 

  • MacKenzie BR, Miller TJ, Cyr S, Leggett WC (1994) Evidence for a dome-shaped relationship between turbulence and larval fish ingestion rates. Limnol Oceanogr 39(8):1790–1799

    Article  Google Scholar 

  • Mann J, Ott S, Pecseli HL, Trulsen J (2005) Turbulent particle flux to a perfectly absorbing surface. J Fluid Mech 534:1–21

    Article  Google Scholar 

  • Mann J, Ott S, Pecseli HL, Trulsen J (2006) Laboratory studies of predator–prey encounters in turbulent environments: effects of changes in orientation and field of view. J Plankton Res 28:509–522

    Article  Google Scholar 

  • Mariani P, MacKenzie BR, Visser AW, Botte V (2007) Individual-based simulations of larval fish feeding in turbulent environments. Mar Ecol Prog Ser 347:155

    Article  Google Scholar 

  • Matsushita K (1992) How do fish larvae of limited motility encounter nauplii in the sea? Bull Plankton Soc Jpn Special Volume: 251–270

  • Mauchline M (1998) The biology of calanoid copepods. Adv Mar Biol 33:1–710

    Article  Google Scholar 

  • Morote E, Olivar MP, Villate F, Uriarte I (2010) A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in the Northwest Mediterranean: influence of prey availability and ontogeny. ICES J Mar Sci J Cons 67(5):897–908

    Article  Google Scholar 

  • Motos L, Uriarte A, Valencia V (1996) The spawning environment of the Bay of Biscay anchovy (Engraulis encrasicolus L.). Sci Mar 60:117–140

    Google Scholar 

  • Muelbert JH, Lewis MR, Kelley DE (1994) The importance of small-scale turbulence in the feeding of herring larvae. J Plankton Res 16(8):927–944

    Article  Google Scholar 

  • Munk P (1992) Foraging behaviour and prey size spectra of larval herring Clupea harengus. Mar Ecol Prog Ser 80(2):149–158

    Article  Google Scholar 

  • Munk P (1997) Prey size spectra and prey availability of larval and small juvenile cod. J Fish Biol 51:340–351

    Article  Google Scholar 

  • Munk P, Kiørboe T (1985) Feeding behaviour and swimming activity of larval herring (Clupea harengus) in relation to density of copepod nauplii. Mar Ecol Prog Ser 24(1):15–21

    Article  Google Scholar 

  • Nogueira E, Gonzalez-Nuevo G, Bode A, Varela M, Moran XAG, Valdes L (2004) Comparison of biomass and size spectra derived from optical plankton counter data and net samples: application to the assessment of mesoplankton distribution along the Northwest and North Iberian Shelf. ICES J Mar Sci 61:508–517

    Article  Google Scholar 

  • O'Connell CP (1981) Development of organ systems in the northern anchovy, Engraulis mordax, and other teleosts 1. Integr Comp Biol 21(2):429–446

    Article  Google Scholar 

  • Owen R, Lo N, Butler J, Theilacker G, Alvarino A, Hunter J, Watanabe Y (1989) Spawning and survival patterns of larval northern anchovy, engraulis mordax, in contrasting environments—a site-Intensive study. Fish Bull 87(3):673–688

    Google Scholar 

  • Pécseli HL, Trulsen J (2007) Turbulent particle fluxes to perfectly absorbing surfaces: a numerical study. J Turbul 8(42):1–25

    Google Scholar 

  • Pécseli HL, Trulsen JK, Fiksen Ø (2010) Predator–prey encounter rates in turbulent water: analytical models and numerical tests. Prog Oceanogr 85(3–4):171–179

    Article  Google Scholar 

  • Pécseli H, Trulsen J, Fiksen Ø (2012) Predator–prey encounter and capture rates for plankton in turbulent environments. Prog Oceanogr 101:14–32

    Article  Google Scholar 

  • Peters RH, Downing JA (1984) Empirical analysis of zooplankton filtering and feeding rates. Limnol Oceanogr 29(4):763–784

    Article  Google Scholar 

  • Platt T, Denman K (1978) The structure of pelagic marine ecosystems. Rapp Pv Réun Cons Int Explor Mer 173:60–65

    Google Scholar 

  • Pope JG, Shepherd JG, Webb J, Stebbing ARD, Mangel M (1994) Successful surf-riding on size spectra: the secret of survival in the sea. Phil Trans R Soc London B 343:41–49

    Article  Google Scholar 

  • Rose K, James H, Cowan J, Clark M, Houde E, Wang S (1999) An individual-based model of bay anchovy population dynamics in the mesohaline region of Chesapeake Bay. Mar Ecol Prog Ser 185:113–132

    Article  Google Scholar 

  • Rosenthal H, Hempel G (1970) Experimental studies in feeding and food requirements of herring larvae (Clupea harengus L.). In: Steele JH (ed) Marine food chains. Edinburgh, pp 344–364

  • Rothschild BJ, Osborn TR (1988) Small-scale turbulence and plankton contact rates. J Plankton Res 10(3):465–474

    Article  Google Scholar 

  • San Martin E, Harris RP, Irigoien X (2006) Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep-Sea Res II 53(14–16):1560–1572

    Article  Google Scholar 

  • See JH, Campbell L, Richardson TL, Pinckney JL, Shen R, Guinasso NL (2005) Combining new technologies for determination of phytoplankton community structure in the northern Gulf of Mexico. J Phycol 41(2):305–310

    Article  Google Scholar 

  • Seljeset O, Vollset K, Folkvord A, Geffen A (2010) The role of prey concentration and size range in the growth and survival of larval cod. Mar Biol Res 6(3):251–262

    Article  Google Scholar 

  • Sheldon RW, Sutcliffe WHJ, Paranjape MA (1977) Structure of pelagic food chain and relationship between plankton and fish production. J Fish Res Board Can 34(12):2344–2353

    Article  Google Scholar 

  • Sourisseau M, Carlotti F (2006) Spatial distribution of zooplankton size spectra on the French continental shelf of the Bay of Biscay during spring 2000 and 2001. J Geophys Res-Oceans 111:C05S09. doi:10.1029/2005jc003063, C05s09

    Article  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press

  • Sundby S, Fossum P (1990) Feeding conditions of Arcto-norwegian cod larvae compared with the Rothschild-Osborn theory on small-scale turbulence and plankton contact rates. J Plankton Res 12(6):1153–1162

    Article  Google Scholar 

  • Theilacker GH (1987) Feeding ecology and growth energetics of larval northern anchovy, Engraulis mordax. Fish Bull 85(2):213–228

    Google Scholar 

  • Theilacker GH, McMaster MF (1971) Mass culture of the rotifer Brachionus plicatilis and its evaluation as a food for larval anchovies. Mar Biol 10(2):183–188

    Article  Google Scholar 

  • Titelman J (2001) Swimming and escape behavior of copepod nauplii: implications for predator–prey interactions among copepods. Mar Ecol Prog Ser 213:203–213

    Article  Google Scholar 

  • Tudela S, Palomera I, Quílez G (2002) Feeding of anchovy Engraulis encrasicolus larvae in the north-west Mediterranean. J Mar Biol Assoc UK 82(02):349–350

    Article  Google Scholar 

  • Urtizberea A, Fiksen Ø, Folkvord A, Irigoien X (2008) Modelling growth of larval anchovies including diel feeding patterns, temperature and body size. J Plankton Res 30(12):1369–1383

    Article  Google Scholar 

  • Utne-Palm AC (1999) The effect of prey mobility, prey contrast, turbidity and spectral composition on the reaction distance of Gobiusculus flavescens to its planktonic prey. J Fish Biol 54(6):1244–1258

    Article  Google Scholar 

  • Viitasalo M, Kiørboe T, Flinkman J, Pedersen L, Visser A (1998) Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities. Mar Ecol Prog Ser 175:129–142

    Article  Google Scholar 

  • Vikebø FB, HusebØ Å, Slotte A, Stenevik EK, Lien VS (2010) Effect of hatching date, vertical distribution, and interannual variation in physical forcing on northward displacement and temperature conditions of Norwegian spring-spawning herring larvae. ICES J Mar Sci J Cons 67(9):1948

    Article  Google Scholar 

  • Visser AW, Fiksen Ø (2013) Optimal foraging in marine ecosystem models: selectivity, profitability and switching. Mar Ecol Prog Ser. doi:10.3354/meps10079

  • Walton WE, Hairston NG, Wetterer JK (1992) Growth-related constraints on diet selection by sunfish. Ecology (Durham) 73(2):429–437

    Article  Google Scholar 

  • Werner F, Ian Perry R, Gregory Lough R, Naimie C (1996) Trophodynamic and advective influences on Georges Bank larval cod and haddock. Deep-Sea Res II 43(7–8):1793–1822

    Article  Google Scholar 

  • Zarauz L, Irigoien X, Urtizberea A, Gonzalez M (2007) Mapping plankton distribution in the Bay of Biscay during three consecutive spring surveys. Mar Ecol Prog Ser 345:27–39

    Article  Google Scholar 

  • Zhou M (2006) What determines the slope of a plankton biomass spectrum? J Plankton Res 28(5):437–448

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank to A.F Opdal, N. Dupont and L. Zarauz for their useful comments in the manuscript, and the Norwegian Research Council for financial support. This paper is contribution no. 608 from AZTI Foundation(Marine Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øyvind Fiksen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table A1

The value of the parameters used in the simulation using four size classes of prey in intervals of logarithmic scale in base 2. The total biomass is 20 mg dw m-3 for any slope in the prey size distribution. All prey is assumed to be zooplankton. See Table 1 for the definition of dp, lp and wp variables. (PDF 407 kb)

Table A2

The value of the parameters used in the simulation using five size classes of prey in intervals of logarithmic scale in base 2. The total biomass is 20 mg dw m-3 for any slope in the prey size distribution. All prey is assumed to be zooplankton. See Table 1 for the definition of dp, lp and wp variables. (PDF 32.0 kb)

Table A3

The value of the parameters used in the simulation with 15 size classes of prey divided with the same size interval. The total biomass is 20 mg dw m-3 for any slope in the prey size distribution. All prey is assumed to be zooplankton. See Table 1 for the definition of dp, lp and wp variables. (PDF 29.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urtizberea, A., Fiksen, Ø. Effects of prey size structure and turbulence on feeding and growth of anchovy larvae. Environ Biol Fish 96, 1045–1063 (2013). https://doi.org/10.1007/s10641-012-0102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-012-0102-6

Keywords

Navigation