Skip to main content
Log in

Shallow divers, deep waters and the rise of behavioural stochasticity

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Little penguins (Eudyptula minor) have one of the widest geographic distributions among penguins, exposing them to variable ecological constraints across their range, which in turn can affect their foraging behaviour. Presumably, behavioural flexibility exists to allow animals to adapt to prevailing environmental conditions throughout their foraging range. This study examined whether complexity in the temporal organization of foraging sequences corresponds to characteristics of the foraging area across four colonies geographically distributed along the entire species’ range. Complexity and fractal scaling in spatiotemporal patterns of foraging behaviour have been theoretically linked to foraging efficiency in heterogeneous environments. Using fractal time series methods (detrended fluctuation analysis), we found that foraging complexity along a stochastic–deterministic gradient was associated with bathymetry in local foraging areas; little penguins foraging in deeper waters produced more stochastic/less deterministic foraging sequences than those foraging in shallower waters. Corresponding data on fledging success suggest that little penguins foraging in deeper waters also experienced reduced reproductive success. A principal component analysis further showed that our fractal scaling index, which specifically measured the degree to which sequences are long-range dependent (a deterministic phenomenon), correlated positively with foraging efficiency (prey encounter per unit time) and negatively with foraging effort (total time underwater). Our statistical models showed that production of complex foraging sequences with high degrees of stochasticity appears to be energy intensive. However, we could not determine which strategy would have maximized foraging success, a variable we could not measure, under the conditions observed. We propose that increasing stochastic elements in foraging behaviour may be necessary under challenging environmental conditions, but it may not be sufficient to match fitness gains attained under more favourable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afán I, Chiaradia A, Forero MG, Dann P, Ramirez F (2015) A novel spatio-temporal scale based on ocean currents unravels environmental drivers of reproductive timing in a marine predator. Proc Biol Sci 282(1810):20150721. doi:10.1098/rspb.2015.0721

    Article  Google Scholar 

  • Alados CL, Huffman MA (2000) Fractal long-range correlations in behavioural sequences of wild chimpanzees: a non-invasive analytical tool for the evaluation of health. Ethology 106(2):105–116. doi:10.1046/j.1439-0310.2000.00497.x

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. Accessed 01 Feb 2017

  • Asher L, Collins LM, Ortiz-Pelaez A, Drewe JA, Nicol CJ, Pfeiffer DU (2009) Recent advances in the analysis of behavioural organization and interpretation as indicators of animal welfare. J R Soc Interface 6(41):1103–1119. doi:10.1098/rsif.2009

    Article  Google Scholar 

  • Bartumeus F (2007) Lévy processes in animal movement: an evolutionary hypothesis. Fractals 15(2):151–162. doi:10.1142/S0218348X07003460

    Article  Google Scholar 

  • Bartumeus F (2009) Behavioral intermittence, Lévy patterns, and randomness in animal movement. Oikos 118(4):488–494. doi:10.1111/j.1600-0706.2009.17313.x

    Article  Google Scholar 

  • Bartumeus F, Da Luz MGE, Viswanathan GM, Catalan J (2005) Animal search strategies: a quantitative random-walk analysis. Ecol 86:3078–3082. doi:10.1890/04-1806

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Grothendieck G, Green P (2016) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-12. https://CRAN.R-project.org/package=lme4. Accessed 31 Jan 2017

  • Benhamou S (2007) How many animals really do the Lévy walk? Ecol 88(8):1962–1969. doi:10.1890/06-1769.1

    Article  Google Scholar 

  • Benhamou S (2014) Of scale and stationarity in animal movements. Ecol Lett 17(3):261–272. doi:10.1111/ele.12225

    Article  Google Scholar 

  • Benoit-Bird KJ, Battaile BC, Heppell SA, Hoover B, Irons D, Jones N, Kuletz KJ, Nordstrom CA, Paredes R, Suryan RM, Waluk CM, Trites AW (2013) Prey patch patterns predict habitat use by top-marine predators with diverse foraging strategies. PLoS One 8(1):e53348. doi:10.1371/journal.pone.0053348

    Article  CAS  Google Scholar 

  • Berlincourt M, Arnould JPY (2015) Influence of environmental conditions on foraging behaviour and its consequences on reproductive performance in little penguins. Mar Biol 162(7):1485–1501. doi:10.1007/s00227-015-2685-x

    Article  Google Scholar 

  • Bivand R, Keitt T, Rowlingson B, Pebesma E, Sumner M, Hijmans R, Rouault E (2016) Rgdal: bindings for the geospatial data abstraction library. R package version 1.2-5. https://cran.r-project.org/web/packages/rgdal/index.html. Accessed 31 Jan 2017

  • Bivand R, Rundel C, Pebesma E, Stuetz R, Hufthammer KO (2017) rgeos: interface to geometry engine—open source (GEOS). R package version 0.3-22. https://cran.r-project.org/web/packages/rgeos/index.html. Accessed 31 Jan 2017

  • Bost CA, Cotté C, Bailleul F, Cherel Y, Charassin JB, Guinet C, Ainley DG, Weimerskirch H (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J Mar Syst 78:363–376. doi:10.1016/j.jmarsys.2008.11.022

    Article  Google Scholar 

  • Boyd C, Castillo R, Hunt GL Jr, Punt AE, VanBlaricom GR, Weimerskirch H, Bertrand S (2015) Predictive modelling of habitat selection by marine predators with respect to the abundance and depth distribution of pelagic prey. J Anim Ecol 84(6):1575–1588. doi:10.1111/1365-2656

    Article  Google Scholar 

  • Bryce RM, Sprague KB (2012) Revisiting detrented fluctuation analysis. Sci Rep 2:315. doi:10.1038/srep00315

    Article  CAS  Google Scholar 

  • Butler PJ (2006) Aerobic dive limit. What is it and is it always used appropriately? Comp Biochem Physiol A Mol Integr Physiol 145(1):1–6. doi:10.1016/j.cbpa.2006.06.006

    Article  CAS  Google Scholar 

  • Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafo MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14(5):365–376. doi:10.1038/nrn3475

    Article  CAS  Google Scholar 

  • Cannon MJ, Percival DB, Caccia DC, Raymond GM, Bassingthwaighte JB (1997) Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series. Phys A 241(3–4):606–626. doi:10.1016/S0378-4371(97)00252-5

    Article  Google Scholar 

  • Chiaradia A, Costalunga A, Kerry K (2003) The diet of little penguin Eudyptula minor at Phillip Island, Victoria, in the absence of a major prey—pilchard (Sardinops sagax). Emu 103(1):43–48. doi:10.1071/MU02020

    Article  Google Scholar 

  • Chiaradia A, Ropert-Coudert Y, Kato A, Mattern T, Yorke J (2007) Diving behaviour of little penguins from four colonies across their whole distribution range: bathymetry affecting diving effort and fledging success. Mar Biol 151(4):1535–1542. doi:10.1007/s00227-006-0593-9

    Article  Google Scholar 

  • Chiaradia A, Forero MG, Hobson KA, Cullen JM (2010) Changes in diet and trophic position of a top predator 10 years after a mass mortality of a key prey. ICES J Mar Sci 67(8):1710–1720. doi:10.1093/icesjms/fsq067

    Article  Google Scholar 

  • Chiaradia A, Forero MG, Hobson KA, Swearer SE, Hume F, Renwick L, Dann P (2012) Diet segregation between two colonies of little penguins Eudyptula minor in southeast Australia. Austral Ecol 37(5):610–619. doi:10.1111/j.1442-9993.2011.02323.x

    Article  Google Scholar 

  • Chiaradia A, Ramirez F, Forero MG, Hobson KA (2016) Stable-isotopes (δ13C, δ15N) combined with conventional dietary approaches reveal plasticity in central-place foraging behaviour of little penguin (Eudyptula minor). Front Ecol Evol 3:00154. doi:10.3389/fevo.2015.00154

    Article  Google Scholar 

  • Cole BJ (1995) Fractal time in animal behaviour: the movement activity of Drosophila. Anim Behav 50(5):1317–1324. doi:10.1016/0003-3472(95)80047-6

    Article  Google Scholar 

  • Collins M, Cullen JM, Dann P (1999) Seasonal and annual foraging movements of little penguins from Phillip Island, Victoria. Wildl Res 26(6):705–721. doi:10.1071/WR98003

    Article  Google Scholar 

  • Constantine W, Percival D (2014) Fractal time series modeling and analysis. R package version 2.0-0, https://cran.r-project.org/web/packages/fractal/index.html. Accessed 11 Feb 2015

  • Cook TR, Lescroël A, Tremblay Y, Bost C-A (2008) To breathe or not to breathe? Optimal breathing, aerobic dive limit and oxygen stores in deep-diving blue eyed shags. Anim Behav 76(3):565–576. doi:10.1016/j.anbehav.2008.02.010

    Article  Google Scholar 

  • Cottin M, MacIntosh AJJ, Kato A, Takahashi A, Debin M, Raclot T, Ropert-Coudert Y (2014) Corticosterone administration leads to a transient alteration of foraging behaviour and complexity in a diving seabird. Mar Ecol Prog Ser 496:249–262. doi:10.3354/meps10618

    Article  CAS  Google Scholar 

  • Cribb N, Seuront L (2016) Changes in the behavioural complexity of bottlenose dolphins along a gradient of anthropogenically-impacted environments in South Australian coastal waters: implications for conservation and management strategies. J Exp Mar Biol Ecol 482:118–127. doi:10.1016/j.jembe.2016.03.020

    Article  Google Scholar 

  • Cullen JM, Montague T, Hull CL (1992) Food of little penguins Eudyptula minor in Victoria: comparison of three localities between 1985 and 1988. Emu 91(5):318–341. doi:10.1071/MU9910318

    Article  Google Scholar 

  • Delignières D, Torre K, Lemoine L (2005) Methodological issues in the application of monofractal analyses in psychological and behavioral research. Nonlinear Dyn Psychol Life Sci 9(4):435–461

    Google Scholar 

  • Doniol-Volcroze T, Lesage V, Giard J, Michaud R (2011) Optimal foraging theory predicts diving and feeding strategies of the largest marine predator. Behav Ecol 22(4):880–888. doi:10.1093/beheco/arr038

    Article  Google Scholar 

  • Eke A, Hermán P, Bassingthwaighte JB, Raymond GM, Percival DB, Cannon M, Balla I, Ikrényi C (2000) Physiological time series: distinguishing fractal noises from motions. Pflügers Arch Eur J Physiol 439:403–415. doi:10.1007/s004249900135

    Article  CAS  Google Scholar 

  • Elliott KH, Davoren GK, Gaston AJ (2008) Time allocation by a deep-diving bird reflects prey type and energy gain. Anim Behav 75(4):1301–1310. doi:10.1016/j.anbehav.2007.09.024

    Article  Google Scholar 

  • Escos JM, Alados CL, Emlen JM (1995) Fractal structures and fractal functions as disease indicators. Oikos 74(2):310–314. doi:10.2307/3545661

    Article  Google Scholar 

  • Fleming SA, Lalas C, van Heezik Y (2013) Little penguin (Eudyptula minor) diet at three breeding colonies in New Zealand. N Z J Ecol 37(2):199–205

    Google Scholar 

  • Fraser MM, Lalas C (2004) Seasonal variation in the diet of blue penguins (Eudyptula minor) at Oamaru, New Zealand. Notornis 51(1):7–15

    Google Scholar 

  • Geoscience Australia (2017) Australian bathymetry and topography grid. Geosci Australia. http://data.aims.gov.au/metadataviewer/faces/view.xhtml?uuid=53a33929-65e2-4495-9457-8a3d44fb799d. Accessed 31 Jan 2017

  • Goundie ET, Rosen DAS, Trites AW (2015) Low prey abundance leads to less efficient foraging behavior in Steller sea lions. J Exp Mar Biol Ecol 470:70–77. doi:10.1016/j.jembe.2015.05.008

    Article  Google Scholar 

  • Grosser S, Burridge CP, Peucker AJ, Waters JM (2015) Coalescent modeling suggests recent secondary-contact of cryptic penguin species. PLoS One 10(12):e0144966. doi:10.1371/journal.pone.0144966

    Article  CAS  Google Scholar 

  • Hijmans R, van Etten J, Cheng J, Mattiuzzi M, Sumner M, Greenberg JA, Perpinan Lamigueiro O, Bevan A, Racine EB, Shortridge A (2016) Raster: geographic data analysis and modeling. R package version 2.5-8. https://cran.r-project.org/web/packages/raster/index.html. Accessed 31 Jan 2017

  • Hocking PM, Rutherford KMD, Picard M (2007) Comparison of time-based frequencies, fractal analysis and T-patterns for assessing behavioural changes in broiler breeders fed on two diets at two levels of feed restriction: a case study. Appl Anim Behav Sci 104:37–48. doi:10.1016/j.applanim.2006.04.023

    Article  Google Scholar 

  • Hoskins AJ, Dann P, Ropert-Coudert Y, Kato A, Costa DP, Arnould JPY (2008) Foraging behaviour and habitat selection of the little penguin Eudyptula minor during early chick rearing in Bass Strait, Australia. Mar Ecol Prog Ser 366:292–303. doi:10.3354/meps07507

    Article  Google Scholar 

  • Hull CL (2000) Comparative diving behaviour and segregation of the marine habitat by breeding royal penguins, Eudyptes schlegeli, and eastern rockhopper penguins, Eudyptes chrysocome filholi, at Macquarie Island. Can J Zool 78(3):333–345. doi:10.1139/z99-192

    Article  Google Scholar 

  • Humphries NE, Queiroz N, Dyer JRM, Pade NG, Musyl MK, Schaefer KM et al (2010) Environmental context explains Lévy and Brownian movement patterns of marine predator. Nat 465(7301):1066–1069. doi:10.1038/nature09116

    Article  CAS  Google Scholar 

  • Hunt GL Jr, Russell RW, Coyle KO, Weingartner T (1998) Comparative foraging ecology of planktivorous auklets in relation to ocean physics and prey availability. Mar Ecol Prog Ser 167:241–259. doi:10.3354/meps167241

    Article  Google Scholar 

  • Kailola PJ, Williams MJ, Stewart PC, Reichelt RE, Mcnee A, Grieve C (1993) Australian fisheries resources. Bureau of Resource Sciences, Department of Primary Industries and Energy; Fisheries Research and Development Corporation, Canberra

    Google Scholar 

  • Kembro JM, Perillo MA, Pury PA, Satterlee DG, Marín RH (2009) Fractal analysis of the ambulation pattern of Japanese quail. Br Poult Sci 50(2):161–170. doi:10.1080/00071660802710116

    Article  CAS  Google Scholar 

  • Kembro JM, Flesia AG, Gleiser RM, Perillo MA, Marin RH (2013) Assessment of long-range correlation in animal behaviour time-series: the temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus). Phys A 392(24):6400–6413. doi:10.1016/j.physa.2013.08.017

    Article  Google Scholar 

  • Klomp NI, Wooller RD (1988) Diet of little penguins, Eudyptula minor, from Penguin Island, Western Australia. Aust J Mar Freshw Res 39(5):633–639. doi:10.1071/MF9880633

    Article  Google Scholar 

  • Kokubun N, Takahashi A, Ito M, Matsumoto K, Kitaysky AS, Watanuki Y (2010) Annual variation in the foraging behaviour of thick-billed murres in relation to upper-ocean thermal structure around St. George Island, Bering Sea. Aquat Biol 8:289–298. doi:10.3354/ab00243

    Article  Google Scholar 

  • Kowalczyk N, Reina R, Preston TJ, Chiaradia A (2015a) Selective foraging within estuarine plume fronts by an inshore resident seabird. Front Mar Sci 2:00042. doi:10.3389/fmars.2015.00042

    Article  Google Scholar 

  • Kowalczyk N, Reina R, Preston TJ, Chiaradia A (2015b) Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird. Oecologia 178(4):967–979. doi:10.1007/s00442-015-3294-6

    Article  Google Scholar 

  • Ladd C, Jahncke J, Hunt GL Jr, Coyle KO, Stabeno PJ (2005) Hydrographic features and seabird foraging in Aleutian Passes. Fish Oceanogr 14:178–195. doi:10.1111/j.1365-2419.2005.00374.x

    Article  Google Scholar 

  • Lescroël A, Bost C-A (2005) Foraging under contrasting oceanographic conditions: the gentoo penguin at Kerguelen Archipelago. Mar Ecol Prog Ser 302:245–261. doi:10.3354/meps302245

    Article  Google Scholar 

  • Liebovitch LS, Toth TA (1989) Fast algorithm to determine fractal dimensions by box counting. Phys Lett A 141(8–9):386–390. doi:10.1016/0375-9601(89)90854-2

    Article  Google Scholar 

  • Longley PA, Batty M (1989) On the fractal measurement of geographical boundaries. Geogr Anal 21(1):47–67. doi:10.1111/j.1538-4632.1989.tb00876.x

    Article  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100(916):603–609. doi:10.1086/282454

    Article  Google Scholar 

  • MacIntosh AJJ (2014) The fractal primate: interdisciplinary science and the math behind the monkey. Primate Res 30(1):95–119. doi:10.2354/psj.30.011

    Article  Google Scholar 

  • MacIntosh AJJ (2015) At the edge of chaos: error tolerance and the maintenance of Lévy statistics in animal movement: comment on “Liberating Lévy walk research from the shackles of optimal foraging” by AM Reynolds. Phys Life Rev 14:105–107. doi:10.1016/j.plrev.2015.07.010

    Article  Google Scholar 

  • MacIntosh AJJ, Alados CL, Huffman MA (2011) Fractal analysis of behaviour in a wild primate: behavioural complexity in health and disease. J R Soc Interface 8(63):1497–1509. doi:10.1098/rsif.2011.0049

    Article  Google Scholar 

  • MacIntosh AJJ, Pelletier L, Chiaradia A, Kato A, Ropert-Coudert Y (2013) Temporal fractals in seabird foraging behaviour: diving through the scales of time. Sci Rep 3:1884. doi:10.1038/srep01884

    Article  Google Scholar 

  • Mandelbrot BB (1977) The fractal geometry of nature. W.H. Freeman and Company, New York

    Google Scholar 

  • Mattern T (2001) Foraging strategies and breeding success in the little penguin, Eudyptula minor: a comparative study between different habitats. Master thesis, University of Otago, Dunedin

  • McInnes AM, Ryan PG, Lacerda M, Deshayes J, Goschen WS, Pichegru L (2017) Small pelagic fish responses to fine-scale oceanographic conditions—implications for the endangered African penguins. Mar Ecol Prog Ser 569:187–203. doi:10.3354/meps12089

    Article  Google Scholar 

  • Meyer X, MacIntosh AJJ, Kato A, Chiaradia A, Ropert-Coudert Y (2015) Hydrodynamic handicaps and organizational complexity in the foraging behavior of two free-ranging penguin species. Anim Biotelemetry 3(1):25. doi:10.1186/s40317-015-0061-8

    Article  Google Scholar 

  • Mitchell JS, Mackay KA, Neil HL, Mackay EJ, Pallentin A, Notman P (2012) Undersea New Zealand, 1:5,000,000. NIWA chart, miscellaneous series no. 92

  • Mori Y, Boyd IL (2004) The behavioural basis for nonlinear functional responses and optimal foraging in Antarctic fur seals. Ecology 85(2):398–410. doi:10.1890/03-4005

    Article  Google Scholar 

  • Morrisson ML, Ralph CJ, Verner J, Jehl JRJ (1990) Avian foraging: theory, methodology, and applications. Stud Avian Biol 13:1–515

    Google Scholar 

  • National Oceanic and Atmospheric Administration (2015) Orbview-2 SeaWiFS. http://coastwatch.pfeg.noaa.gov/erddap/griddap/erdSWchla8day.html. Accessed 11 Dec 2015

  • Pante E, Simon-Bouhet B (2013) marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS One 8(9):e73051. doi:10.1371/journal.pone.0073051

    Article  CAS  Google Scholar 

  • Patterson TA, Parton A, Langrock R, Blackwell PG, Thomas L, King R (2016) Statistical modelling of animal movement: a myopic review and a discussion of good practice. arXiv:1603.07511v3

  • Pelletier L, Kato A, Chiaradia A, Ropert-Coudert Y (2012) Can thermoclines be a cue to prey distribution for marine top predators? A case study with little penguins. PLoS One 7(4):e31768. doi:10.1371/journal.pone.0031768

    Article  CAS  Google Scholar 

  • Pelletier L, Chiaradia A, Kato A, Ropert-Coudert Y (2014) Fine-scale spatial age segregation in the limited foraging area of an inshore seabird species, the little penguin. Oecologia 176(2):399–408. doi:10.1007/s00442-014-3018-3

    Article  Google Scholar 

  • Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley HE (1992) Long-range correlations in nucleotide sequences. Nature 356:168–170. doi:10.1038/356168a0

    Article  CAS  Google Scholar 

  • Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87. doi:10.1063/1.166141

    Article  CAS  Google Scholar 

  • Poupart TA, Waugh SM, Bost C, Bost C-A, Dennis T, Lane R, Rogers K, Sugishita J, Taylor GA, Wilson K-J, Zhang J, Arnould JPY (2017) Variability in the foraging range of Eudyptula minor across breeding sites in central New Zealand. N Z J Zool. doi:10.1080/03014223.2017.1302970 (In press)

    Google Scholar 

  • Pyke GH (2015) Understanding movements of organisms: it’s time to abandon the Lévy foraging hypothesis. Methods Ecol Evol 6(1):1–16. doi:10.1111/2041-210X.12298

    Article  Google Scholar 

  • Reynolds AM (2015) Liberating Lévy walk research from the shackles of optimal foraging. Phys Life Rev 14:59–83. doi:10.1016/j.plrev.2015.03.002

    Article  Google Scholar 

  • Reynolds AM, Ropert-Coudert Y, Kato A, Chiaradia A, MacIntosh AJJ (2015) A priority-based queuing process explanation for scale-free foraging behaviours. Anim Behav 108:67–71. doi:10.1016/j.anbehav.2015.07.022

    Article  Google Scholar 

  • Ropert-Coudert Y, Wilson RP (2005) Trends and perspectives in animal-attached remote sensing. Front Ecol Environ 3(8):437–444. doi:10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2

  • Ropert-Coudert Y, Kato A, Baudat J, Bost C-A, Le Maho Y, Naito Y (2001) Feeding strategies of free-ranging Adélie penguins, Pygoscelis adeliae, analyzed by multiple data recording. Polar Biol 24(6):460–466. doi:10.1007/s003000100234

    Article  Google Scholar 

  • Ropert-Coudert Y, Kato A, Naito Y, Cannell BL (2003) Individual diving strategies in the little penguin. Waterbirds 26(4):403–408. doi:10.1675/1524-4695(2003)026[0403:IDSITL]2.0.CO;2

  • Ropert-Coudert Y, Kato A, Wilson RP, Cannell B (2006) Foraging strategies and prey encounter rate of free-ranging little penguins. Mar Biol 149:139–148. doi:10.1007/s00227-005-0188-x

    Article  Google Scholar 

  • Ropert-Coudert Y, Knott N, Chiaradia A, Kato A (2007) How do different data logger sizes and attachment positions affect the diving behaviour of little penguins? Deep Sea Res Part II Top Stud Oceanogr 54(3–4):415–423. doi:10.1016/j.dsr2.2006.11.018

    Article  Google Scholar 

  • Ropert-Coudert Y, Kato A, Chiaradia A (2009) Impact of small-scale environmental perturbations on local marine food resources: a case study of a predator, the little penguin. Proc Biol Sci 276(1676):4105–4109. doi:10.1098/rspb.2009.1399

    Article  Google Scholar 

  • Ropert-Coudert Y, Kato A, Grémillet D, Crenner F (2012) Bio-logging: recording the ecophysiology and behavior of animals moving freely in their environment. In: Le Galliard JF, Guarini JM, Gaill F (eds) Sensors for ecology: towards integrated knowledge of ecosystems. CNRS INEE, Paris, pp 17–41

    Google Scholar 

  • Russell RW, Harrison NM, Hunt GL Jr (1999) Foraging at a front: hydrography, zooplankton, and avian planktivory in the northern Bering Sea. Mar Ecol Prog Ser 182:77–93. doi:10.3354/meps182077

    Article  Google Scholar 

  • Rutherford KMD, Haskell M, Glasbey C, Jones RB, Lawrence AB (2003) Detrented fluctuation analysis of behavioural responses to mild acute stressors in domestic hens. Appl Anim Behav Sci 83(2):125–139. doi:10.1016/S0168-1591(03)00115-1

    Article  Google Scholar 

  • Rutherford KMD, Haskell M, Glasbey C, Jones RB, Lawrence AB (2004) Fractal analysis of animal behaviour as an indicator of animal welfare. Anim Welf 13(1):99–103

    Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 4 Feb 2017

  • Sala JE, Wilson RP, Quintana F (2012) How much is too much? Assessment of prey consumption by Magellanic penguins in Patagonian colonies. PLoS One 7(12):e51487. doi:10.1371/journal.pone.0051487

    Article  CAS  Google Scholar 

  • Seaturtle.org 2002. Seaturtle.org Maptool. http://www.seaturtle.org/. Accessed 18 Aug 2015

  • Seuront L (2010) Fractals and multifractals in ecology and aquatic science. CRC Press, Boca Raton

    Google Scholar 

  • Seuront L, Cribb N (2011) Fractal analysis reveals pernicious stress levels related to boat presence and type in the Indo-Pacific bottlenose dolphin, Tursiops aduncus. Phys A 390(12):2333–2339. doi:10.1016/j.physa.2011.02.015

    Article  CAS  Google Scholar 

  • Seuront L, Cribb N (2017) Fractal analysis provides new insights into the complexity of marine mammal behavior: a review, two methods, their application to diving and surfacing patterns, and their relevance to marine mammal welfare assessment. Mar Mamm Sci. doi:10.1111/mms.12399 (In press)

    Google Scholar 

  • Sevcikova H, Percival D, Gneiting T (2014) Fractaldim: estimation of fractal dimensions. R package version 0.8-4. https://cran.r-project.org/web/packages/fractaldim/index.html. Accessed 1 Feb 2017

  • Shealer DA (2002) Foraging behaviour and food of seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton, pp 179–216

    Google Scholar 

  • Shimada I, Kawazoe Y, Hara H (1993) A temporal model of animal behaviour based on a fractality in the feeding of Drosophila melanogaster. Biol Cybern 68:477–481. doi:10.1007/BF00200806

    Article  CAS  Google Scholar 

  • Shimada I, Kawazoe Y, Hara H (1995) Temporal fractal in the feeding behavior of Drosophila melanogaster. J Ethol 13:153–158. doi:10.1007/BF02350106

    Article  Google Scholar 

  • Shlesinger MF, Klafter J (1986) Lévy walks versus Lévy flight. In: Stanley HE, Ostrowsky N (eds) On growth and form: fractal and non-fractal patterns in physics. Martinus Nijhoff Publishers, Dordrecht, pp 279–283

    Chapter  Google Scholar 

  • Sims DW, Southall EJ, Humphries NE, Hays GC, Bradshaw CJA, Pitchford JW et al (2008) Scaling laws of marine predator search behaviour. Nature 451(7182):1098–1102. doi:10.1038/nature06518

    Article  CAS  Google Scholar 

  • Stahel C, Gales R (1987) Little penguins-Fairy penguins in Australia. University Press, Kensington

    Google Scholar 

  • Stroe-Kunold E, Stadnytska T, Werner J, Braun S (2009) Estimating long-range dependence in time series: an evaluation of estimators implemented in R. Behav Res Methods 41:909–923. doi:10.3758/BRM.41.3.909

    Article  Google Scholar 

  • Sueur C (2011) A non-Lévy random walk in chacma baboons: what does it means? PLoS One 6(1):e16131. doi:10.1371/journal.pone.0016131

    Article  CAS  Google Scholar 

  • Takahashi A, Dunn MJ, Trathan PN, Sato K, Naito Y, Croxall JP (2003) Foraging strategies of chinstrap penguins at Signy Island, Antarctica: importance of benthic feeding on Antarctic krill. Mar Ecol Prog Ser 250:279–289. doi:10.3354/meps250279

    Article  Google Scholar 

  • Taqqu M, Teverovsky V, Willinger W (1995) Estimators for long-range dependence: an empirical study. Fractals 3(4):785–788. doi:10.1142/S0218348X95000692

    Article  Google Scholar 

  • Tremblay Y, Cherel Y (2003) Geographic variation in the foraging behaviour, diet and chick growth of rockhopper penguins. Mar Ecol Prog Ser 251:279–297. doi:10.3354/meps251279

    Article  Google Scholar 

  • Tynan CT (1998) Ecological importance of the southern boundary of the Antarctic circumpolar current. Nature 392:708–710. doi:10.1038/33675

    Article  CAS  Google Scholar 

  • Viswanathan GM, Buldyrev SV, Havlin S, da Luz MGE, Raposo EP, Stanley HE (1999) Optimizing the success of random searches. Nature 401:911–914. doi:10.1038/44831

    Article  CAS  Google Scholar 

  • Viswanathan GM, Raposo EP, da Luz MGE (2008) Lévy flights and superdiffusion in the context of biological encounters and random searches. Phys Life Rev 5(3):133–150. doi:10.1016/j.plrev.2008.03.002

    Article  Google Scholar 

  • Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The physics of foraging. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Watanuki Y, Kato A, Naito Y, Robertson G, Robinson S (1997) Diving and foraging behaviour of Adélie penguins in areas with and without fast sea-ice. Polar Biol 17(4):296–304. doi:10.1007/PL00013371

    Article  Google Scholar 

  • Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? Deep Sea Res Part II Topical Stud Oceanogr 54(3–4):211–223. doi:10.1016/j.dsr2.2006.11.013

    Article  Google Scholar 

  • Wienecke B, Wooller RD, Klomp NI (1995) The ecology and management of little penguins on Penguin Island, Western Australia. In: Dann P, Norman FI, Reilly P (eds) The penguins: ecology and management. Surrey Beatty, Melbourne

    Google Scholar 

  • Williams TD, Briggs DR, Croxall JP, Naito Y, Kato A (1992) Diving pattern and performance in relation to foraging ecology in the gentoo penguin, Pygoscelis papua. J Zool 227(2):211–230. doi:10.1111/j.1469-7998.1992.tb04818.x

    Article  Google Scholar 

  • Wilson RP (2003) Penguins predict their performance. Mar Ecol Prog Ser 249:305–310. doi:10.3354/meps249305

    Article  Google Scholar 

  • Zamon JE, Greene CH, Meier E, Demer DA, Hewitt RP, Sexton S (1996) Acoustic characterization of the three-dimensional prey field of foraging chinstrap penguins. Mar Ecol Prog Ser 131:1–10. doi:10.3354/meps131001

    Article  Google Scholar 

  • Zimmer I, Ropert-Coudert Y, Poulin N, Kato A, Chiaradia A (2011) Evaluating the relative importance of intrinsic and extrinsic factors on the foraging activity of top predators: a case study on female little penguins. Mar Biol 158(4):715–722. doi:10.1007/s00227-010-1594-2

    Article  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the staff and students of Phillip Island Nature Parks, in particular P. Dann, L. Renwick, P. Waziak, J. Yorke and the support of B. Cannell, D. Houston, Y. Naito and S. Ward. We thank the staff and rangers at Penguin Island and Oamaru Blue Penguin Colony. We also thank two anonymous reviewers for providing very valuable comments on earlier versions of this manuscript. This work was financially supported by grants from the Japan Society for the Promotion of Science, Phillip Island Nature Parks, Penguin Foundation, Australian Academy of Science, Murdoch University, Otago University, Sasakawa Scientific Research Grant from the Japan Science Society and the Ministère de l’Enseignement Supérieur et de la Recherche (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Meyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

XM received financial support from a PhD scholarship from the Ministère de l’Enseignement Supérieur et de la Recherche (France). The data were collected thank to grants from the Japan Society for the Promotion of Science (YRC-AK), Phillip Island Nature Parks (AC), Penguin Foundation (AC), Australian Academy of Science (AC), Murdoch University (YRC), Otago University (TM) and Sasakawa Scientific Research Grant from the Japan Science Society (YRC-AK).

Ethical approval

The study was approved by the respective ethics committees of Phillip Island Nature Parks (Animal Experimentation Ethics Committee Number 6.2000), Murdoch University (no number) and Otago University (no number), and research permits were acquired from the Department of Natural Resources of Victoria (Wildlife permit No. 10001184), the New Zealand Department of Conservation (no number), and the Department of Conservation and Land Management of Western Australia (no number).

Additional information

Responsible Editor V.H. Paiva.

Reviewed by: A. McInnes and an undisclosed expert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, X., MacIntosh, A.J.J., Chiaradia, A. et al. Shallow divers, deep waters and the rise of behavioural stochasticity. Mar Biol 164, 149 (2017). https://doi.org/10.1007/s00227-017-3177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3177-y

Navigation