Skip to main content
Log in

Additive effects of vorinostat and MLN8237 in pediatric leukemia, medulloblastoma, and neuroblastoma cell lines

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Purpose Histone deacetylase (HDAC) inhibitors, such as vorinostat, decrease Aurora kinase activity by a variety of mechanisms. Vorinostat and MLN8237, a selective Aurora A kinase inhibitor, disrupt the spindle assembly and the mitotic checkpoint at different points, suggesting that the combination could have increased antitumor activity. The purpose of this study was to determine the cytotoxicity of vorinostat and MLN8237 in pediatric tumor cell lines. Methods Cell survival was measured after 72 h of drug treatment using a modified methyl tetrazolium assay. For drug combination experiments, cells were exposed to medium alone (controls), single drug alone, or to different concentrations of the combination of the two drugs, for a total of 36 concentration pairs per plate. The interaction of the drug combination was analyzed using the universal response surface approach. Results The cells express the target of MLN8237, Aurora A. For each cell line, the single agent IC50 for MLN8237 and for vorinostat was in the clinically relevant range. Both drugs inhibited cell survival in a concentration-dependent fashion. At concentrations of MLN8237 exceeding approximately 1 μM, there was a paradoxical increase in viability signal in all three lines that may be explained by inhibition of Aurora B kinase. The combination of MLN8237 and vorinostat showed additive cytotoxicity in all three cell lines and nearly abrogated the paradoxical increase in survival noted at high single-agent MLN8237 concentrations. Conclusion MLN8237 and vorinostat are active in vitro against cancer cell lines. These results provide important preclinical support for the development of future clinical studies of MLN8237and vorinostat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74(5):659–671. doi:10.1016/j.bcp.2007.04.007

    Article  PubMed  CAS  Google Scholar 

  2. Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1(4):287–299

    Article  PubMed  CAS  Google Scholar 

  3. Lane A, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27(32):5459–5468. doi:10.1200/JCO.2009.22.1291

    Article  PubMed  CAS  Google Scholar 

  4. Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97(18):10014–10019. doi:10.1073/pnas.180316197

    Article  PubMed  CAS  Google Scholar 

  5. Richon V, O’Brien JP (2002) Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin Cancer Res 8(3):662–664

    PubMed  Google Scholar 

  6. Li Y, Kao GD, Garcia BA, Shabanowitz J, Hunt DF, Qin J, Phelan C, Lazar MA (2006) A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. Genes Dev 20(18):2566–2579. doi:10.1101/gad.1455006

    Article  PubMed  CAS  Google Scholar 

  7. Ishii S, Kurasawa Y, Wong J, Yu-Lee LY (2008) Histone deacetylase 3 localizes to the mitotic spindle and is required for kinetochore-microtubule attachment. Proc Natl Acad Sci USA 105(11):4179–4184. doi:10.1073/pnas.0710140105

    Article  PubMed  CAS  Google Scholar 

  8. Keshelava N, Houghton PJ, Morton CL, Lock RB, Carol H, Keir ST, Maris JM, Reynolds CP, Gorlick R, Kolb EA, Wu J, Smith MA (2009) Initial testing (stage 1) of vorinostat (SAHA) by the pediatric preclinical testing program. Pediatr Blood Cancer 53(3):505–508. doi:10.1002/pbc.21988

    Article  PubMed  Google Scholar 

  9. Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J, Reid JM, Ames MM, Speights R, Ingle AM, Zwiebel J, Blaney SM, Adamson PC (2010) Pediatric Phase I trial and pharmacokinetic study of vorinostat: a children’s oncology group Phase I consortium report. J Clin Oncol 28(22):3623–3629. doi:10.1200/JCO.2009.25.9119

    Article  PubMed  CAS  Google Scholar 

  10. Sells T, Ecsedy J, Stroud S, Janowick D, Hoar K, LeRoy P, Wysong D, Zhang M, Huck J, Silverman L, Chen W, Bembenek M, Claiborne C, Manfredi M (2008, abstract #237) MLN8237: an orally active small molecule inhibitor of Aurora A kinase in phase I clinical trials [abstract]. In: Proceedings of the 99th Annual Meeting of the American Association for Cancer Research; 2008 Apr 12–16; San Diego, CA Philadelphia (PA): AACR

  11. Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN Jr, Gandara DR (2008) Aurora kinases as anticancer drug targets. Clin Cancer Res 14(6):1639–1648. doi:10.1158/1078-0432.CCR-07-2179

    Article  PubMed  CAS  Google Scholar 

  12. Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4(12):927–936. doi:10.1038/nrc1502

    Article  PubMed  CAS  Google Scholar 

  13. Marumoto T, Zhang D, Saya H (2005) Aurora-A—a guardian of poles. Nat Rev Cancer 5(1):42–50. doi:10.1038/nrc1526

    Article  PubMed  CAS  Google Scholar 

  14. Katayama H, Brinkley WR, Sen S (2003) The Aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev 22(4):451–464

    Article  PubMed  Google Scholar 

  15. Glover DM, Leibowitz MH, McLean DA, Parry H (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81(1):95–105

    Article  PubMed  CAS  Google Scholar 

  16. Hoar K, Chakravarty A, Rabino C, Wysong D, Bowman D, Roy N, Ecsedy JA (2007) MLN8054, a small-molecule inhibitor of Aurora A, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol Cell Biol 27(12):4513–4525. doi:10.1128/MCB.02364-06

    Article  PubMed  CAS  Google Scholar 

  17. Katayama H, Zhou H, Li Q, Tatsuka M, Sen S (2001) Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J Biol Chem 276(49):46219–46224. doi:10.1074/jbc.M107540200

    Article  PubMed  CAS  Google Scholar 

  18. Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, Saya H (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278(51):51786–51795. doi:10.1074/jbc.M306275200

    Article  PubMed  CAS  Google Scholar 

  19. Sasai K, Parant JM, Brandt ME, Carter J, Adams HP, Stass SA, Killary AM, Katayama H, Sen S (2008) Targeted disruption of Aurora A causes abnormal mitotic spindle assembly, chromosome misalignment and embryonic lethality. Oncogene 27(29):4122–4127. doi:10.1038/onc.2008.47

    Article  PubMed  CAS  Google Scholar 

  20. Maris JM, Morton CL, Gorlick R, Kolb EA, Lock R, Carol H, Keir ST, Reynolds CP, Kang MH, Wu J, Smith MA, Houghton PJ (2010) Initial testing of the aurora Kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr Blood Cancer 55(1):26–34. doi:10.1002/pbc.22430

    PubMed  Google Scholar 

  21. Zhang XH, Rao M, Loprieato JA, Hong JA, Zhao M, Chen GZ, Humphries AE, Nguyen DM, Trepel JB, Yu X, Schrump DS (2008) Aurora A, Aurora B and survivin are novel targets of transcriptional regulation by histone deacetylase inhibitors in non-small cell lung cancer. Cancer Biol Ther 7(9):1388–1397

    Article  PubMed  CAS  Google Scholar 

  22. Park JH, Jong HS, Kim SG, Jung Y, Lee KW, Lee JH, Kim DK, Bang YJ, Kim TY (2008) Inhibitors of histone deacetylases induce tumor-selective cytotoxicity through modulating Aurora-A kinase. J Mol Med 86(1):117–128. doi:10.1007/s00109-007-0260-8

    Article  PubMed  CAS  Google Scholar 

  23. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280(29):26729–26734. doi:10.1074/jbc.C500186200

    Article  PubMed  CAS  Google Scholar 

  24. Magnaghi-Jaulin L, Eot-Houllier G, Fulcrand G, Jaulin C (2007) Histone deacetylase inhibitors induce premature sister chromatid separation and override the mitotic spindle assembly checkpoint. Cancer Res 67(13):6360–6367. doi:10.1158/0008-5472.CAN-06-3012

    Article  PubMed  CAS  Google Scholar 

  25. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  PubMed  CAS  Google Scholar 

  26. Twentyman PR, Luscombe M (1987) A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56(3):279–285

    Article  PubMed  CAS  Google Scholar 

  27. Greco WR, Park HS, Rustum YM (1990) Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-beta-D-arabinofuranosylcytosine. Cancer Res 50(17):5318–5327

    PubMed  CAS  Google Scholar 

  28. D’Argenio D, Schumitzky A (1997) ADAPT II user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  29. Horton TM, Gannavarapu A, Blaney SM, D’Argenio DZ, Plon SE, Berg SL (2006) Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 58(1):13–23. doi:10.1007/s00280-005-0135-z

    Article  PubMed  CAS  Google Scholar 

  30. Cervantes-Rupierez A, Burris HA, Cohen RB, Dees EC, Infante JR, Fingert HJ, Shinde V, Venkatakrishnan K, Chakravarty A, Tabernero J (2010) Pharmacokinetics and pharmacodynamic results from two phase I studies of the investigational selective Aurora A kinase (AAK) inhibitor MLN8237: exposure-dependent AAK inhibition in human tumors. J Clin Oncol 28(7S):3031A

    Google Scholar 

  31. Mosse Y, Lipsitz EG, Maris JM, Weigel B, Adamson PC, Ingle M, Ahern CH, Blaney S (2010) A pediatric phase I trial and pharmacokinetic study of MLN8237, on oral selective small molecule inhibitor of Aurora A kinase: a children’s oncology group Phase I consortium study. J Clin Oncol 28(7S):9529A

    Google Scholar 

  32. Kelly WK, O’Connor OA, Krug LM, Chiao JH, Heaney M, Curley T, MacGregore-Cortelli B, Tong W, Secrist JP, Schwartz L, Richardson S, Chu E, Olgac S, Marks PA, Scher H, Richon VM (2005) Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 23(17):3923–3931. doi:10.1200/JCO.2005.14.167

    Article  PubMed  CAS  Google Scholar 

  33. Kallio MJ, McCleland ML, Stukenberg PT, Gorbsky GJ (2002) Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr Biol 12(11):900–905

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Cancer Institute K12 Pediatric Clinical Oncology Research Training Program 5K12CA90433-09 (JAM), a Kappa Alpha Theta Faculty Scholar grant (JAM), and a Carousel Faculty Scholar Grant (JAM). This work was presented at the American Association for Cancer Research 102nd Annual Meeting, April 6, 2011, Orlando, FL.

Conflict of interest

J. Ecsedy is an employee of Millennium Pharmaceuticals, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jodi A. Muscal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 55.5 kb)

ESM 2

(DOC 36.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muscal, J.A., Scorsone, K.A., Zhang, L. et al. Additive effects of vorinostat and MLN8237 in pediatric leukemia, medulloblastoma, and neuroblastoma cell lines. Invest New Drugs 31, 39–45 (2013). https://doi.org/10.1007/s10637-012-9831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-012-9831-9

Keywords

Navigation