Skip to main content

Advertisement

Log in

Innate Immunity and Inflammation in NAFLD/NASH

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Inflammation and hepatocyte injury and death are the hallmarks of nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver disease (NAFLD), which is a currently burgeoning public health problem. Innate immune activation is a key factor in triggering and amplifying hepatic inflammation in NAFLD/NASH. Thus, identification of the underlying mechanisms by which immune cells in the liver recognize cell damage signals or the presence of pathogens or pathogen-derived factors that activate them is relevant from a therapeutic perspective. In this review, we present new insights into the factors promoting the inflammatory response in NASH including sterile cell death processes resulting from lipotoxicity in hepatocytes as well as into the altered gut-liver axis function, which involves translocation of bacterial products into portal circulation as a result of gut leakiness. We further delineate the key immune cell types involved and how they recognize both damage-associated molecular patterns or pathogen-associated molecular patterns through binding of surface-expressed pattern recognition receptors, which initiate signaling cascades leading to injury amplification. The relevance of modulating these inflammatory signaling pathways as potential novel therapeutic strategies for the treatment of NASH is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

ROS:

Reactive oxygen species

RIP1 and RIP3:

Receptor protein kinases 1 and 3

TNF-R1:

Tumor necrosis factor receptor-1

DAMPs:

Damage-associated molecular patterns

PRRs:

Pattern recognition receptors

PAMPs:

Pathogen-associated molecular patterns

HMGB1:

The high-mobility group box 1

LPS:

Lipopolysaccharide

TNF-α:

Tumor necrosis factor-alpha

IL:

Interleukin

TLRs:

Toll-like receptors

KCs:

Kupffer KCs

HSC:

Hepatic stellate cells

DCs:

Dendritic cells

NLRs:

Nucleotide oligomerization NOD-like receptors domain

CCL2 and CCL5:

C-C motif ligand 2 and 5

PPAR-δ:

Peroxisome proliferator activator receptor delta

CX3CR1:

Fractalkine receptor

NK:

Natural killer

NKT:

Natural killer T

IB:

Intestinal barrier

GLP-1:

Glucagon-like peptide 1

FGF19:

Fibroblast growth factor-19

IL-4:

Interleukin-4

IFN-γ:

Interferon-gamma

PDGF:

Platelet-derived growth factor

NEU:

Neutrophils

SAMs:

Scar-associated macrophages

References

  1. Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin Liver Dis. (Epub ahead of print). doi:10.1016/j.cld.2015.10.001.

  2. Satapathy SK, Sanyal AJ. Epidemiology and natural history of nonalcoholic fatty liver disease. Semin Liver Dis. 2015;35:221–235.

    Article  PubMed  Google Scholar 

  3. Yeh MM, Brunt EM. Pathological features of fatty liver disease. Gastroenterology. 2014;147:754–764.

    Article  CAS  PubMed  Google Scholar 

  4. Burt AD, Lackner C, Tiniakos DG. Diagnosis and assessment of NAFLD: definitions and histopathological classification. Semin Liver Dis. 2015;35:207–220.

    Article  PubMed  Google Scholar 

  5. Marengo A, Jouness EI, Bugianesi E. Progression and natural history of nonalcoholic fatty liver disease in adults. Clin Liver Dis. (Epub ahead of print). doi:10.1016/j.cld.2015.10.010.

  6. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149:389–397.

    Article  PubMed  Google Scholar 

  7. Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141:1249–1253.

    Article  PubMed  Google Scholar 

  8. Darwish Murad S, Metselaar HJ. The invasion of fatty liver disease in liver transplantation. Transpl Int. 2015. doi:10.1111/tri.12707.

    PubMed  Google Scholar 

  9. Feldstein AE. Novel insights into the pathophysiology of nonalcoholic fatty liver disease. Semin Liver Dis. 2010;30:391–401.

    Article  CAS  PubMed  Google Scholar 

  10. de la Higuera-Tijera F, Servin-Caamano AI. Pathophysiological mechanisms involved in nonalcoholic steatohepatitis and novel potential therapeutic targets. World J Hepatol. 2015;7:1297–1301.

    Article  Google Scholar 

  11. Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci. 2014;15:8591–8638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hirsova P, Gores GJ. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis. Cell Mol Gastroenterol Hepatol. 2015;1:17–27.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Trauner M, Arrese M, Wagner M. Fatty liver and lipotoxicity. Biochim Biophys Acta. 2010;1801:299–310.

    Article  CAS  PubMed  Google Scholar 

  14. Ibrahim SH, Kohli R, Gores GJ. Mechanisms of lipotoxicity in NAFLD and clinical implications. J Pediatr Gastroenterol Nutr. 2011;53:131–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zambo V, Simon-Szabo L, Szelenyi P, Kereszturi E, Banhegyi G, Csala M. Lipotoxicity in the liver. World J Hepatol. 2013;5:550–557.

    PubMed  PubMed Central  Google Scholar 

  16. Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in nonalcoholic fatty liver disease. Biochim Biophys Acta. 2015;1852:1765–1778.

    Article  CAS  PubMed  Google Scholar 

  17. Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61:1066–1079.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125:437–443.

    Article  PubMed  Google Scholar 

  19. Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014;147:765–783. (e764).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wree A, Eguchi A, McGeough MD, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology. 2014;59:898–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Afonso MB, Rodrigues PM, Carvalho T, et al. Necroptosis is a key pathogenic event in human and experimental murine models of nonalcoholic steatohepatitis. Clin Sci (Lond). 2015;129:721–739.

    Article  CAS  Google Scholar 

  22. Alkhouri N, Carter-Kent C, Feldstein AE. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert Rev Gastroenterol Hepatol. 2011;5:201–212.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moriwaki K, Chan FK. RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 2013;27:1640–1649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mehal WZ. The inflammasome in liver injury and nonalcoholic fatty liver disease. Dig Dis. 2014;32:507–515.

    Article  PubMed  Google Scholar 

  25. Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;12:387–400.

    Article  CAS  PubMed  Google Scholar 

  26. Sutti S, Bruzzi S, Albano E. The role of immune mechanisms in alcoholic and nonalcoholic steatohepatitis: a 2015 update. Expert Rev Gastroenterol Hepatol. 2015. doi:10.1586/17474124.2016.1111758.

    PubMed  Google Scholar 

  27. Jindal A, Bruzzi S, Sutti S, et al. Fat-laden macrophages modulate lobular inflammation in nonalcoholic steatohepatitis (NASH). Exp Mol Pathol. 2015;99:155–162.

    Article  CAS  PubMed  Google Scholar 

  28. Ganz M, Szabo G. Immune and inflammatory pathways in NASH. Hepatol Int. 2013;7:771–781.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology. 2012;143:1158–1172.

    Article  CAS  PubMed  Google Scholar 

  30. Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology. 2013;57:577–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia-Martinez I, Shaker ME, Mehal WZ. Therapeutic opportunities in damage-associated molecular pattern-driven metabolic diseases. Antioxid Redox Signal. 2015;23:1305–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Uchida K. Natural antibodies as a sensor of electronegative damage-associated molecular patterns (DAMPs). Free Radical Biol Med. 2014;72:156–161.

    Article  CAS  Google Scholar 

  33. Huebener P, Pradere JP, Hernandez C, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest. 2015;125:539–550.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48:322–335.

    Article  CAS  PubMed  Google Scholar 

  35. Kesar V, Odin JA. Toll-like receptors and liver disease. Liver Int. 2014;34:184–196.

    Article  CAS  PubMed  Google Scholar 

  36. Petrasek J, Csak T, Szabo G. Toll-like receptors in liver disease. Adv Clin Chem. 2013;59:155–201.

    Article  CAS  PubMed  Google Scholar 

  37. Bieghs V, Trautwein C. Innate immune signaling and gut-liver interactions in nonalcoholic fatty liver disease. Hepatobiliary Surg Nutr. 2014;3:377–385.

    PubMed  PubMed Central  Google Scholar 

  38. Netea MG, van der Meer JW. Immunodeficiency and genetic defects of pattern-recognition receptors. N Eng J Med. 2011;364:60–70.

    Article  CAS  Google Scholar 

  39. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–820.

    Article  CAS  PubMed  Google Scholar 

  40. Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139:323–334. (e327).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ehses JA, Meier DT, Wueest S, et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia. 2010;53:1795–1806.

    Article  CAS  PubMed  Google Scholar 

  42. Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;1247:387–400.

    Article  Google Scholar 

  43. Wree A, McGeough MD, Pena CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl). 2014;92:1069–1082.

    Article  CAS  Google Scholar 

  44. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol. 2013;3:785–797.

    PubMed  PubMed Central  Google Scholar 

  45. Duarte N, Coelho IC, Patarrao RS, Almeida JI, Penha-Goncalves C, Macedo MP. How inflammation impinges on NAFLD: a role for Kupffer cells. Biomed Res Int. 2015;2015:984578.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lanthier N. Targeting Kupffer cells in nonalcoholic fatty liver disease/nonalcoholic steatohepatitis: why and how? World J Hepatol. 2015;7:2184–2188.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59:1393–1405.

    Article  PubMed  Google Scholar 

  48. Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60:1090–1096.

    Article  CAS  PubMed  Google Scholar 

  49. Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577–594. (e571).

    Article  CAS  PubMed  Google Scholar 

  50. Leroux A, Ferrere G, Godie V, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol. 2012;57:141–149.

    Article  CAS  PubMed  Google Scholar 

  51. Sawada K, Ohtake T, Hasebe T, et al. Augmented hepatic Toll-like receptors by fatty acids trigger the pro-inflammatory state of nonalcoholic fatty liver disease in mice. Hepatol Res. 2014;44:920–934.

    Article  CAS  PubMed  Google Scholar 

  52. Fallowfield JA, Mizuno M, Kendall TJ, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007;178:5288–5295.

    Article  CAS  PubMed  Google Scholar 

  53. Chinetti-Gbaguidi G, Staels B. Macrophage polarization in metabolic disorders: functions and regulation. Curr Opin Lipidol. 2011;22:365–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tacke F, Yoneyama H. From NAFLD to NASH to fibrosis to HCC: role of dendritic cell populations in the liver. Hepatology. 2013;58:494–496.

    Article  CAS  PubMed  Google Scholar 

  55. Lukacs-Kornek V, Schuppan D. Dendritic cells in liver injury and fibrosis: shortcomings and promises. J Hepatol. 2013;59:1124–1126.

    Article  CAS  PubMed  Google Scholar 

  56. Henning JR, Graffeo CS, Rehman A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology. 2013;58:589–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sutti S, Locatelli I, Bruzzi S, et al. CX3CR1-expressing inflammatory dendritic cells contribute to the progression of steatohepatitis. Clin Sci (Lond). 2015;129:797–808.

    Article  Google Scholar 

  58. Almeda-Valdes P, Aguilar Olivos NE, Barranco-Fragoso B, Uribe M, Mendez-Sanchez N. The role of dendritic cells in fibrosis progression in nonalcoholic fatty liver disease. Biomed Res Int. 2015. doi:10.1155/2015/768071.

    PubMed  PubMed Central  Google Scholar 

  59. Xu R, Huang H, Zhang Z, Wang FS. The role of neutrophils in the development of liver diseases. Cell Mol Immunol. 2014;11:224–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rensen SS, Bieghs V, Xanthoulea S, et al. Neutrophil-derived myeloperoxidase aggravates nonalcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS One. 2012;7:e52411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ibusuki R, Uto H, Arima S, et al. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet. Liver Int. 2013;33:1549–1556.

    CAS  PubMed  Google Scholar 

  62. Talukdar S, da Oh Y, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012;18:1407–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tian Z, Chen Y, Gao B. Natural killer cells in liver disease. Hepatology. 2013;57:1654–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Geissmann F, Cameron TO, Sidobre S, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 2005;3:e113.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kumar V. NKT-cell subsets: promoters and protectors in inflammatory liver disease. J Hepatol. 2013;59:618–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin-Murphy BV, You Q, Wang H, et al. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding. PLoS One. 2014;9:e80949.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Elinav E, Pappo O, Sklair-Levy M, et al. Adoptive transfer of regulatory NKT lymphocytes ameliorates nonalcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping. J Pathol. 2006;209:121–128.

    Article  CAS  PubMed  Google Scholar 

  68. Kremer M, Thomas E, Milton RJ, et al. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology. 2010;51:130–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tajiri K, Shimizu Y, Tsuneyama K, Sugiyama T. Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2009;21:673–680.

    Article  CAS  PubMed  Google Scholar 

  70. Syn WK, Oo YH, Pereira TA, et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology. 2010;51:1998–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tajiri K, Shimizu Y. Role of NKT cells in the pathogenesis of NAFLD. Int J Hepatol. 2012. doi:10.1155/2012/850836.

    PubMed  PubMed Central  Google Scholar 

  72. Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and nonalcoholic fatty liver disease. Clin Biochem. 2015;48:923–930.

    Article  CAS  PubMed  Google Scholar 

  73. Vajro P, Paolella G, Fasano A. Microbiota and gut-liver axis: their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2013;56:461–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Federico A, Dallio M, Godos J, Loguercio C, Salomone F. Targeting gut-liver axis for the treatment of nonalcoholic steatohepatitis: translational and clinical evidence. Transl Res (Epub ahead of print). doi:10.1016/j.trsl.2015.08.002.

  75. Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap–bile acids in metabolic control. Nat Rev Endocrinol. 2014;10:488–498.

    Article  CAS  PubMed  Google Scholar 

  76. Liu HX, Keane R, Sheng L, Wan YY. Implications of microbiota and bile acid in liver injury and regeneration. J Hepatol. 2015;63:1502–1510.

    Article  CAS  PubMed  Google Scholar 

  77. Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124:3–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Giorgio V, Miele L, Principessa L, et al. Intestinal permeability is increased in children with nonalcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 2014;46:556–560.

    Article  PubMed  Google Scholar 

  79. Luther J, Garber JJ, Khalili H, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol. 2015;1:222–232.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Teixeira TF, Collado MC, Ferreira CL, Bressan J, Peluzio Mdo C. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res. 2012;32:637–647.

    Article  CAS  PubMed  Google Scholar 

  81. Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–1887.

    Article  CAS  PubMed  Google Scholar 

  82. Schneider KM, Bieghs V, Heymann F, et al. CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology. 2015;62:1405–1416.

    Article  CAS  PubMed  Google Scholar 

  83. Vonghia L, Francque S. Cross talk of the immune system in the adipose tissue and the liver in nonalcoholic steatohepatitis: pathology and beyond. World J Hepatol. 2015;7:1905–1912.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ramadori P, Kroy D, Streetz KL. Immunoregulation by lipids during the development of nonalcoholic steatohepatitis. Hepatobiliary Surg Nutr. 2015;4:11–23.

    PubMed  PubMed Central  Google Scholar 

  85. Moschen AR, Wieser V, Tilg H. Adiponectin: key player in the adipose tissue-liver crosstalk. Curr Med Chem. 2012;19:5467–5473.

    Article  CAS  PubMed  Google Scholar 

  86. Wan J, Benkdane M, Teixeira-Clerc F, et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology. 2014;59:130–142.

    Article  CAS  PubMed  Google Scholar 

  87. Arrese M, Cabrera D, Barrera F. Obeticholic acid: expanding the therapeutic landscape of NASH. Ann Hepatol. 2015;14:430–432.

    PubMed  Google Scholar 

  88. Cariou B, Staels B. GFT505 for the treatment of nonalcoholic steatohepatitis and type 2 diabetes. Expert Opin Invest Drugs. 2014;23:1441–1448.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH grants R01 DK082451 and U01 AA022489 to A.E.F. and by grants from the Fondo Nacional de Desarrollo Cientıfico y Tecnologico (FONDECYT 1150327 to M.A. and FONDECYT PD3140396 to D.C.) and the Comision Nacional de Investigacion Cientıfica y Tecnologica (grant PFB 12/2007, Basal Centre for Excellence in Science and Technology, M.A.), both from the Government of Chile. A.K. received support from the Millennium Institute on Immunology and Immunotherapy, Santiago Chile. We thank Nicolas Triantafilo, MD, for assistance in providing the figure for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel E. Feldstein.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrese, M., Cabrera, D., Kalergis, A.M. et al. Innate Immunity and Inflammation in NAFLD/NASH. Dig Dis Sci 61, 1294–1303 (2016). https://doi.org/10.1007/s10620-016-4049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4049-x

Keywords

Navigation