Skip to main content

Advertisement

Log in

Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases

  • Review
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Mitochondria are attractive cellular organelles which are so interesting in both basic and clinical research, especially after it was found that they were arisen as a bacterial intruder in ancient cells. Interestingly, even now, they are the focus of many investigations and their function and relevance to health and disease have remained open questions. More recently, research on mitochondria have turned out their potential application in medicine as a novel therapeutic intervention. The importance of this issue is highlighted when we know that mitochondrial dysfunction can be observed in a variety of diseases such as cardiovascular diseases, neurodegenerative diseases, ischemia, diabetes, renal failure, skeletal muscles disorders, liver diseases, burns, aging, and cancer progression. In other words, transplantation of viable mitochondria into the injured tissues would replace or augment damaged mitochondria, allowing the rescue of cells and restoration of the normal function. Therefore, mitochondrial transplantation would be revolutionary for the treatment of a variety of diseases in which conventional therapies have proved unsuccessful. Here, we describe pieces of evidence of mitochondrial transplantation, discuss and highlight the current and future directions to show why mitochondrial transplantation could be a master key for treatment of a variety of diseases or injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH (2018) Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev Rep 14:484–499

    Article  CAS  PubMed  Google Scholar 

  • Ahmad T et al (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33(9):994–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aimo A et al (2016) Targeting mitochondrial dysfunction in chronic heart failure: current evidence and potential approaches. Curr Pharm Des 22:4807–4822

    Article  CAS  PubMed  Google Scholar 

  • Alborzi S, Madadi G, Samsami A, Soheil P, Azizi M, Alborzi M, Bakhshaie P (2015) Decreased ovarian reserve: any new hope? Minerva Ginecol 67:149–167

    CAS  PubMed  Google Scholar 

  • Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C (2005) Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem 280:35742–35750

    Article  CAS  PubMed  Google Scholar 

  • Bach D et al (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278:17190–17197

    Article  PubMed  Google Scholar 

  • Berridge M, Herst P, Rowe M, Schneider R, McConnell M (2018) Mitochondrial transfer between cells: methodological constraints in cell culture and animal models. Anal Biochem 552:75–80

    Article  CAS  PubMed  Google Scholar 

  • Boczonadi V et al (2018) Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons. Hum Mol Genet 27:2187–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonafede R, Mariotti R (2017) ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front Cell Neurosci 11:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bragoszewski P, Turek M, Chacinska A (2017) Control of mitochondrial biogenesis and function by the ubiquitin–proteasome system. Open Biol 7:170007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caicedo A et al (2015) MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 5:9073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantó C (2018) Mitochondrial dynamics: shaping metabolic adaptation. Int Rev Cell Mol Biol 340:129–167

    Article  PubMed  Google Scholar 

  • Chang J-C et al (2016) Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl Res 170:40–56 e43

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18:R169–R176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2017) Receptor-interacting protein 140 overexpression impairs cardiac mitochondrial function and accelerates the transition to heart failure in chronically infarcted rats. Transl Res 180:91–102

    Article  CAS  PubMed  Google Scholar 

  • Chou SH et al (2017) Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke 48:2231–2237. https://doi.org/10.1161/strokeaha.117.017758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cid-Castro C, Hernández-Espinosa DR, Morán J (2018) ROS as regulators of mitochondrial dynamics in neurons. Cell Mol Neurobiol 38:995–1007

    Article  CAS  PubMed  Google Scholar 

  • Cloonan SM, Choi AM (2016) Mitochondria in lung disease. J Clin Invest 126:809–820

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan DB, Yao R, Thedsanamoorthy JK, Zurakowski D, Pedro J, McCully JD (2017) Transit and integration of extracellular mitochondria in human heart cells. Sci Rep 7:17450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Domenico F, Barone E, Perluigi M, Butterfield DA (2017) The triangle of death in Alzheimer’s disease brain: the aberrant cross-talk among energy metabolism, mammalian target of rapamycin signaling, and protein homeostasis revealed by redox proteomics. Antioxid Redox Signal 26:364–387

    Article  CAS  PubMed  Google Scholar 

  • Ehses S et al (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott R, Jiang X, Head J (2015) Mitochondria organelle transplantation: a potential cellular biotherapy for cancer. J Surg S(2):9

    Google Scholar 

  • Emani SM, McCully JD (2018) Mitochondrial transplantation: applications for pediatric patients with congenital heart disease. Transl Pediatr 7:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Emani SM, Piekarski BL, Harrild D, Del Nido PJ, McCully JD (2017) Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg 154:286–289. https://doi.org/10.1016/j.jtcvs.2017.02.018

    Article  PubMed  Google Scholar 

  • Faizi M, Seydi E, Abarghuyi S, Salimi A, Nasoohi S, Pourahmad J (2016) A search for mitochondrial damage in Alzheimer’s disease using isolated rat brain mitochondria. Iran J Pharm Res 15:185

    PubMed  PubMed Central  Google Scholar 

  • Forbes JM (2016) Mitochondria-power players in kidney function? Trends Endocrinol Metab 27:441–442. https://doi.org/10.1016/j.tem.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  • Ganie SA, Dar TA, Bhat AH, Dar KB, Anees S, Zargar MA, Masood A (2016) Melatonin: a potential anti-oxidant therapeutic agent for mitochondrial dysfunctions and related disorders. Rejuvenation Res 19:21–40

    Article  CAS  PubMed  Google Scholar 

  • Giannoccaro MP, La Morgia C, Rizzo G, Carelli V (2017) Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson’s disease. Mov Disord 32:346–363

    Article  PubMed  Google Scholar 

  • Gollihue JL et al (2018) Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma 35:1800–1818

    Article  PubMed  PubMed Central  Google Scholar 

  • Gollihue JL, Patel SP, Mashburn C, Eldahan KC, Sullivan PG, Rabchevsky AG (2017) Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J Neurosci Methods 287:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm A, Mensah-Nyagan AG, Eckert A (2016) Alzheimer, mitochondria and gender. Neurosci Biobehav Rev 67:89–101

    Article  CAS  PubMed  Google Scholar 

  • Griparic L, Kanazawa T, van der Bliek AM (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178:757–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa K et al (2018) Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 36:1404–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa K et al (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535:551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidari MM, Khatami M, Danafar A, Dianat T, Farahmand G, Talebi AR (2016) Mitochondrial genetic variation in iranian infertile men with varicocele. Int J Fertil Steril 10:303–309

    PubMed  PubMed Central  Google Scholar 

  • Hoppel CL, Tandler B, Fujioka H, Riva A (2009) Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41:1949–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X et al (2013) Kissing and nanotunneling mediate intermitochondrial communication in the heart. Proc Natl Acad Sci 110:2846–2851

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang PJ et al (2016) Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transpl 25:913–927. https://doi.org/10.3727/096368915x689785

    Article  CAS  Google Scholar 

  • Jiang D et al (2016) Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis 7:e2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabekkodu SP, Chakrabarty S, Shukla V, Varghese VK, Singh KK, Thangaraj K, Satyamoorthy K (2015) Mitochondrial biology: from molecules to diseases. Mitochondrion 24:93–98. https://doi.org/10.1016/j.mito.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  • Kanaan GN, Harper ME (2017) Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta 2:30241–30244

    Google Scholar 

  • Kaza AK et al (2017) Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg 153:934–943. https://doi.org/10.1016/j.jtcvs.2016.10.077

    Article  PubMed  Google Scholar 

  • Kim YJ et al (2017) Association between Mitofusin 2 gene polymorphisms and late-onset Alzheimer’s disease in the Korean population. Psychiatry Investig 14:81–85

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Hwang JW, Yun C-K, Lee Y, Choi Y-S (2018) Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep 8:3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong LH, Liu Z, Li H, Zhu L, Chen SL, Xing FQ (2003a) First twins born in Mainland China by autologous granular cell mitochondria transfer. Di Yi Jun Yi Da Xue Xue Bao 23:990–991

    PubMed  Google Scholar 

  • Kong LH, Liu Z, Li H, Zhu L, Xing FQ (2003b) Pregnancy in a 46-year-old woman after autologous granular cell mitochondria transfer. Di Yi Jun Yi Da Xue Xue Bao 23:743–747

    PubMed  Google Scholar 

  • Kuck JL, Obiako BO, Gorodnya OM, Pastukh VM, Kua J, Simmons JD, Gillespie MN (2015) Mitochondrial DNA damage-associated molecular patterns mediate a feed-forward cycle of bacteria-induced vascular injury in perfused rat lungs. Am J Phys Lung Cell Mol Phys 308:1078–1085

    Google Scholar 

  • Kumar SR (2017) Mitochondrial transplantation: another miracle of molecular medicine? J Thorac Cardiovasc Surg 154:284–285

    Article  PubMed  Google Scholar 

  • Kuo C-C et al (2017) Prevention of axonal degeneration by perineurium injection of mitochondria in a sciatic nerve crush injury model. Neurosurgery 80:475–488

    Article  PubMed  Google Scholar 

  • Kuwahara Y, Roudkenar MH, Suzuki M, Urushihara Y, Fukumoto M, Saito Y, Fukumoto M (2016) The involvement of mitochondrial membrane potential in cross-resistance between radiation and docetaxel. Int J Radiat Oncol Biol Phys 96:556–565. https://doi.org/10.1016/j.ijrobp.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova I, Siira SJ, Shearwood AJ, Ermer JA, Filipovska A, Rackham O (2017) Simultaneous processing and degradation of mitochondrial RNAs revealed by circularized RNA sequencing. Nucl Acids Res 45:5487–5500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845

    Article  CAS  PubMed  Google Scholar 

  • Lim TK, Rone MB, Lee S, Antel JP, Zhang J (2015) Mitochondrial and bioenergetic dysfunction in trauma-induced painful peripheral neuropathy. Mol Pain 11:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C-S, Chang J-C, Kuo S-J, Liu K-H, Lin T-T, Cheng W-L, Chuang S-F (2014) Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol 53:141–146

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Crisosto C et al (2017) Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 14:342–360

    Article  CAS  PubMed  Google Scholar 

  • Loureiro R, Mesquita KA, Magalhaes-Novais S, Oliveira PJ, Vega-Naredo I (2017) Mitochondrial biology in cancer stem cells. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2017.06.012

    Article  PubMed  Google Scholar 

  • Lu J et al (2017) Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget 8:15539

    PubMed  PubMed Central  Google Scholar 

  • Ma S et al (2017) SIRT1 Activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longev 4602715:13

    Google Scholar 

  • Masuzawa A et al (2013) Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 304:H966–H982. https://doi.org/10.1152/ajpheart.00883.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathis S, Couratier P, Julian A, Corcia P, Le Masson G (2017) Current view and perspectives in amyotrophic lateral sclerosis. Neural Regen Res 12:181

    Article  PubMed  PubMed Central  Google Scholar 

  • May-Panloup P et al (2016) Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 22:725–743. https://doi.org/10.1093/humupd/dmw028

    Article  CAS  PubMed  Google Scholar 

  • McCully JD, Cowan DB, Pacak CA, Toumpoulis IK, Dayalan H, Levitsky S (2009) Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol 296:H94–H105

    Article  CAS  PubMed  Google Scholar 

  • McCully JD, Levitsky S, Pedro J, Cowan DB (2016) Mitochondrial transplantation for therapeutic use. Clin Transl Med 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  • McCully JD, Cowan DB, Emani SM, Del Nido PJ (2017) Mitochondrial transplantation: from animal models to clinical use in humans. Mitochondrion 34:127–134. https://doi.org/10.1016/j.mito.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Lastres D, Fontanesi F, García-Consuegra I, Martín MA, Arenas J, Barrientos A, Ugalde C (2012) Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15:324–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris G, Berk M (2015) The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 13:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskowitzova K et al (2018) Mitochondrial transplantation prolongs cold preservation time in murine cardiac transplantation. J Heart Lung Transpl 37:S22–S23

    Article  Google Scholar 

  • Nzigou BM, Gerbal-Chaloin S, Bokus A, Daujat-Chavanieu M, Jorgensen C, Hugnot J-P, Vignais M-L (2017) MitoCeption: transferring isolated human MSC mitochondria to glioblastoma stem cells. J Vis Exp. https://doi.org/10.3791/55245

    Article  Google Scholar 

  • Oktay K et al (2015) Oogonial precursor cell-derived autologous mitochondria injection to improve outcomes in women with multiple IVF failures due to low oocyte quality: a clinical translation. Reprod Sci 22:1612–1617. https://doi.org/10.1177/1933719115612137

    Article  CAS  PubMed  Google Scholar 

  • Onyango IG, Dennis J, Khan SM (2016) Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis 7:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Onyango IG, Khan SM, Bennett JP Jr (2017) Mitochondria in the pathophysiology of Alzheimer’s and Parkinson’s diseases. Front Biosci 22:854–872

    Article  CAS  Google Scholar 

  • Pacak CA et al (2015) Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biology open:BIO201511478

  • Paliwal S, Chaudhuri R, Agrawal A, Mohanty S (2018) Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci 25:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picone P et al (2016) Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates. Aging 8:1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preble JM, Kondo H, Levitsky S, McCully JD (2013) Quality control parameters for mitochondria transplant in cardiac tissue. Mol Biol 2:1008

    Google Scholar 

  • Preble J, Kondo H, Levitsky S, James D, McCully J (2014a) Quality control parameters for mitochondria transplant in cardiac tissue JSM Biochem. Mol Biol 2:1008

    Google Scholar 

  • Preble JM, Pacak CA, Kondo H, MacKay AA, Cowan DB, McCully JD (2014b) Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J Vis Exp. https://doi.org/10.3791/51682

    Article  PubMed  PubMed Central  Google Scholar 

  • Preble JM, Pacak CA, Kondo H, MacKay AA, Cowan DB, McCully JD (2014c) Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J Vis Exp 5:51682. https://doi.org/10.3791/51682

    Article  CAS  Google Scholar 

  • Ralto KM, Parikh SM (2016) Mitochondria in acute kidney injury. Semin Nephrol 36:8–16. https://doi.org/10.1016/j.semnephrol.2016.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Barbieri G et al (2018) Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion. https://doi.org/10.1016/j.mito.2018.03.002

    Article  PubMed  Google Scholar 

  • Robicsek O et al (2017) Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder. Schizophr Bull 44:432–442

    Article  PubMed Central  Google Scholar 

  • Rocca CJ et al (2017) Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci Transl Med 9:eaaj2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roudkenar MH, Halabian R, Tehrani HA, Amiri F, Jahanian-Najafabadi A, Roushandeh AM, Abbasi-Malati Z (2018) Lipocalin 2 enhances mesenchymal stem cell-based cell therapy in acute kidney injury rat model. Cytotechnology 70:103–117

    Article  CAS  PubMed  Google Scholar 

  • Roushandeh AM, Bahadori M, Roudkenar MH (2017) Mesenchymal stem cell-based therapy as a new horizon for kidney injuries. Arch Med Res 48:133–146

    Article  CAS  PubMed  Google Scholar 

  • Rub C, Wilkening A, Voos W (2017) Mitochondrial quality control by the Pink1/Parkin system. Cell Tissue Res 367:111–123. https://doi.org/10.1007/s00441-016-2485-8

    Article  CAS  PubMed  Google Scholar 

  • Sabbah HN (2016) Targeting mitochondrial dysfunction in the treatment of heart failure. Expert Rev Cardiovasc Ther 14:1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Salimi A, Roudkenar MH, Sadeghi L, Mohseni A, Seydi E, Pirahmadi N, Pourahmad J (2015) Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol 6:461–471. https://doi.org/10.1016/j.redox.2015.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salimi A, Roudkenar MH, Seydi E, Sadeghi L, Mohseni A, Pirahmadi N, Pourahmad J (2017) Chrysin as an anti-cancer agent exerts selective toxicity by directly inhibiting mitochondrial complex II and V in CLL B-lymphocytes. Cancer Invest 35:174–186. https://doi.org/10.1080/07357907.2016.1276187

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Iwata M (2007) Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 66:10–16

    Article  PubMed  Google Scholar 

  • Schirone L et al (2017) A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev 3920195:2

    Google Scholar 

  • Shaki F, Shayeste Y, Karami M, Akbari E, Rezaei M, Ataee R (2017) The effect of epicatechin on oxidative stress and mitochondrial damage induced by homocycteine using isolated rat hippocampus mitochondria. Res Pharm Sci 12:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Siira SJ, Shearwood AJ, Bracken CP, Rackham O, Filipovska A (2017) Defects in RNA metabolism in mitochondrial disease. Int J Biochem Cell Biol 85:106–113

    Article  CAS  PubMed  Google Scholar 

  • Simmons JD, Gillespie MN (2015) Plasma nuclear and mitochondrial DNA levels in acute myocardialinfarction patients. Coron Artery Dis 26:286–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Simula L, Campello S (2018) Monitoring the mitochondrial dynamics in mammalian cells. Methods Mol Biol 1782:267–285

    Article  CAS  PubMed  Google Scholar 

  • Simula L, Nazio F, Campello S (2017) The mitochondrial dynamics in cancer and immune-surveillance. Semin Cancer Biol 47:29–42

    Article  CAS  PubMed  Google Scholar 

  • Sinkler CA, Kalpage H, Shay J, Lee I, Malek MH, Grossman LI, Hüttemann M (2017) Tissue-and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxid Med Cell Longev. https://doi.org/10.1155/2017/1534056

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Tymoczko JL, Berg JM, Stryer L (2011) Biochemistry: a short course. Macmillan, New York

    Google Scholar 

  • Van Blerkom J (2011) Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11:797–813. https://doi.org/10.1016/j.mito.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  • von Hardenberg A, Maack C (2017) Mitochondrial therapies in heart failure. Handb Exp Pharmacol 243:491–514

    Article  CAS  Google Scholar 

  • Wang X, Gerdes H-H (2015) Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22:1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XM, Chen KM, Wang Y, Shi SP (1986) Functional changes in rat-liver mitochondria during the early phase of burn injury. Burns Incl Therm Inj 12:461–464

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2018) Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res Therapy 9:106

    Article  CAS  Google Scholar 

  • Woods DC, Tilly JL (2015) Autologous Germline Mitochondrial Energy Transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med 33:410–421. https://doi.org/10.1055/s-0035-1567826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S et al (2018) Polymer functionalization of isolated mitochondria for cellular transplantation and metabolic phenotype alteration. Adv Sci 5:1700530. https://doi.org/10.1002/advs.201700530

    Article  CAS  Google Scholar 

  • You J et al (2017) Receptor-interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes. Acta Physiol 220:58–71

    Article  CAS  Google Scholar 

  • Zhang HY, Lu NH, Xie Y, Guo GH, Zhan JH, Chen J (2008) Influence of heat shock preconditioning on structure and function of mitochondria in gastric mucosa of severely burned animals: experiment with rats. Zhonghua Yi Xue Za Zhi 88:564–567

    CAS  PubMed  Google Scholar 

  • Zhang C, Montooth KL, Calvi BR (2017) Incompatibility between mitochondrial and nuclear genomes during oogenesis results in ovarian failure and embryonic lethality. Development 144:2490–2503. https://doi.org/10.1242/dev.151951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zussman B, Weiner G, Ducruet A (2017) Mitochondrial transfer into the cerebrospinal fluid in the setting of subarachnoid hemorrhage. Neurosurgery 82:N11–N13

    Article  Google Scholar 

Download references

Acknowledgements

Part of this study was supported by National Institute for Medical Research Development (Grant No. 962134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehryar Habibi Roudkenar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roushandeh, A.M., Kuwahara, Y. & Roudkenar, M.H. Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology 71, 647–663 (2019). https://doi.org/10.1007/s10616-019-00302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00302-9

Keywords

Navigation