Skip to main content
Log in

Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells

  • Review
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aoshima K, Baba A, Makino Y, Okada Y (2013) Establishment of alternative culture method for spermatogonial stem cells using knockout serum replacement. Plos One 8:e77715

  • Aponte PM, Soda T, Teerds KJ, Mizrak SC, Van De Kant HJ, De Rooij DG (2008) Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136:543–557

    Article  CAS  Google Scholar 

  • Bahadorani M, Hosseini SM, Abedi P, Hajian M, Hosseini SE, Vahdati A, Baharvand H, Nasr-Esfahani MH (2012) Short-term in vitro culture of goat enriched spermatogonial stem cells using different serum concentrations. J Assist Reprod Genet 29:39–46

    Article  CAS  Google Scholar 

  • Barnes D, Sato G (1980) Serum-free cell culture: a unifying approach. Cell 22:649–655

    Article  CAS  Google Scholar 

  • Bellve AR, Cavicchia JC, Millette CF, O’Brien DA, Bhatnagar YM, Dym M (1977) Spermatogenic cells of the prepuberal mouse: isolation and morphological characterization. J Cell Biol 74:68–85

    Article  CAS  Google Scholar 

  • Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA 91:11303–11307

    Article  CAS  Google Scholar 

  • Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 91:11298–11302

    Article  CAS  Google Scholar 

  • Cooke JE, Godin I, Ffrench-Constant C, Heasman J, Wylie CC (1993) Culture and manipulation of primordial germ cells. Methods Enzymol 225:37–58

    Article  CAS  Google Scholar 

  • Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, Orwig KE, Wolgemuth DJ, Pandolfi PP (2004) Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36:653–659

  • Feng LX, Chen Y, Dettin L, Pera RA, Herr JC, Goldberg E, Dym M (2002) Generation and in vitro differentiation of a spermatogonial cell line. Science 297:392–395

  • Gautam K, Shashi K, Sunita K (2012) Enrichment of CD9+ spermatogonial stem cells from goat (Capra aegagrus hircus) testis using magnetic microbeads. Stem Cell Discov 2:92–99

    Article  Google Scholar 

  • Giuili G, Tomljenovic A, Labrecque N, Oulad-Abdelghani M, Rassoulzadegan M, Cuzin F (2002) Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep 3:753–759

    Article  CAS  Google Scholar 

  • Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203

  • Guan K, Wolf F, Becker A, Engel W, Nayernia K, Hasenfuss G (2009) Isolation and cultivation of stem cells from adult mouse testes. Nat Protoc 4:143–154

    Article  CAS  Google Scholar 

  • Hamra FK, Schultz N, Chapman KM, Grellhesl DM, Cronkhite JT, Hammer RE, Garbers DL (2004) Defining the spermatogonial stem cell. Dev Biol 269:393–410

  • He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC, Dym M (2008) GDNF up regulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells 26:266–278

    Article  CAS  Google Scholar 

  • Hofmann MC, Braydich-Stolle L, Dym M (2005) Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 279:114–124

    Article  CAS  Google Scholar 

  • Izadyar F, Spierenberg GT, Creemers LB, den Ouden K, de Rooij DG (2002) Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124:85–94

    Article  CAS  Google Scholar 

  • Izadyar F, Den Ouden K, Creemers LB, Posthuma G, Parvinen M, De Rooij DG (2003) Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol Reprod 68:272–281

    Article  CAS  Google Scholar 

  • Johnston DS, Russell LD, Griswold MD (2000) Advances in spermatogonial stem cell transplantation. Rev Reprod 5:183–188

    Article  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69:612–616

  • Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2004) CD9 is a surface marker on mouse and rat male germline stem cells. Biol Reprod 70:70–75

    Article  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, Shinohara T (2005a) Long-term culture of mouse male germline stem cells under serum- or feeder-free conditions. Biol Reprod 72:985–991

  • Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, Miki H, Takehashi M, Toyokuni S, Shinkai Y, Oshimura M, Ishino F, Ogura A, Shinohara T (2005b) Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132:4155–4163

  • Kanatsu-Shinohara M, Inoue K, Ogonuki N, Morimoto H, Ogura A, Shinohara T (2011) Serum- and feeder-free culture of mouse germline stem cells. Biol Reprod 84:97–105

    Article  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Inoue K, Takashima S, Takehashi M, Ogonuki N, Morimoto H, Nagasawa T, Ogura A, Shinohara T (2012a) Reconstitution of mouse spermatogonial stem cell niches in culture. Cell Stem Cell 11:567–578

  • Kanatsu-Shinohara M, Morimoto H, Shinohara T (2012b) Enrichment of mouse spermatogonial stem cells by melanoma cell adhesion molecule expression. Biol Reprod 87:1–10

  • Kanatsu-Shinohara M, Mori Y, Shinohara T (2013) Enrichment of mouse spermatogonial stem cells based on aldehyde dehydrogenase activity. Biol Reprod 89:140

    Article  Google Scholar 

  • Kawarasaki T, Uchiyama K, Hirao A, Azuma S, Otake M, Shibata M, Tsuchiya S, Enosawa S, Takeuchi K, Konno K, Hakamata Y, Yoshino H, Wakai T, Ookawara S, Tanaka H, Kobayashi E, Murakami T (2009) Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source. J Biomed Opt 14:054017

  • Kofman AE, Huszar JM, Payne CJ (2013) Transcriptional analysis of histone deacetylase family members reveal similarities between differentiating and aging spermatogonial stem cells. Stem Cell Rev Rep 9:59–64

    Article  CAS  Google Scholar 

  • Kossack N, Meneses J, Shefi S, Nguyen HN, Chavez S, Nicholas C, Gromoll J, Turek PJ, Reijo-Pera RA (2009) Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27:138–149

  • Kubota H, Avarbock MR, Brinster RL (2004a) Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod 71:722–731

    Article  CAS  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004b) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 101:16489–16494

    Article  CAS  Google Scholar 

  • Lee J, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S, Kimura T, Nakano T, Ogura A, Shinohara T (2007) Akt mediates self-renewal division of mouse spermatogonial stem cells. Development 134:1853–1859

  • Lee J, Kanatsu-Shinohara M, Morimoto H, Kazuki Y, Takashima S, Oshimura M, Toyokuni S, Shinohara T (2009) Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-cyclin D2 activation. Cell Stem Cell 5:76–86

    Article  CAS  Google Scholar 

  • Ma W, An L, Wu Z, Wang X, Guo M, Miao K, Ma W, Tian J (2011) Efficient and safe recipient preparation for transplantation of mouse spermatogonial stem cells: pretreating testes with heat shock. Biol Reprod 85:670–677

  • Nagano M, Avarbock MR, Leonida EB, Brinster CJ, Brinster RL (1998) Culture of mouse spermatogonial stem cells. Tissue Cell 30:389–397

    Article  CAS  Google Scholar 

  • Nagano M, Avarbock MR, Brinster RL (1999) Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod 60:1429–1436

    Article  CAS  Google Scholar 

  • Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL (2003) Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 68:2207–2214

    Article  CAS  Google Scholar 

  • Nasiri Z, Hosseini SM, Hajian M, Abedi P, Bahadorani M, Baharvand H, Nasr-Esfahani MH (2012) Effects of different feeder layers on short-term culture of prepubertal bovine testicular germ cells in-vitro. Theriogenology 77:1519–1528

  • Oatley MJ, Kaucher AV, Racicot KE, Oatley JM (2011a) Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 85:347–356

    Article  CAS  Google Scholar 

  • Oatley MJ, Racicot KE, Oatley JM (2011b) Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod 84:639–645

    Article  CAS  Google Scholar 

  • Ogawa T, Arechaga JM, Avarbock MR, Brinster RL (1997) Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 41:111–122

    CAS  Google Scholar 

  • Ryu BY, Kubota H, Avarbock MR, Brinster RL (2005) Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci USA 102:14302–14307

    Article  CAS  Google Scholar 

  • Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527

  • Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, Kubota Y, Ogawa T (2011a) In vitro production of functional sperm in cultured neonatal mouse testes. Nature 471:504–507

  • Sato T, Katagiri K, Yokonishi T, Kubota Y, Inoue K, Ogonuki N, Matoba S, Ogura A, Ogawa T (2011b) In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat Commun 2:1–7

  • Sato T, Yokonishi T, Komeya M, Katagiri K, Kubota Y, Matoba S, Ogonuki N, Ogura A, Yoshida S, Ogawa T (2012) Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice. Proc Natl Acad Sci USA 109:16934–16938

  • Schmitz B, Radbruch A, Kummel T, Wickenhauser C, Korb H, Hansmann ML, Thiele J, Fischer R (1994) Magnetic activated cell sorting (MACS)—a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques. Eur J Haematol 52:267–275

  • Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW, Yancopoulos GD, Murphy A, Valenzuela DM, Hobbs RM, Pandolfi PP, Rafii S (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346–350

  • Shinohara T, Avarbock MR, Brinster RL (1999) Beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 96:5504–5509

    Article  CAS  Google Scholar 

  • Shinohara T, Avarbock MR, Brinster RL (2000a) Functional analysis of spermatogonial stem cells in steel and cryptorchid infertile mouse models. Dev Biol 220:401–411

    Article  CAS  Google Scholar 

  • Shinohara T, Orwig KE, Avarbock MR, Brinster RL (2000b) Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci USA 97:8346–8351

    Article  CAS  Google Scholar 

  • Stewart C (2000) Multiparameter flow cytometry. J Immunoassay 21:255–272

    Article  CAS  Google Scholar 

  • Tegelenbosch RA, de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290:193–200

    Article  CAS  Google Scholar 

  • Umeyama K, Watanabe M, Saito H, Kurome M, Tohi S, Matsunari H, Miki K, Nagashima H (2009) Dominant-negative mutant hepatocyte nuclear factor 1 alpha induces diabetes in transgenic-cloned pigs. Transgenic Res 18:697–706

  • van der Wee KS, Johnson EW, Dirami G, Dym TM, Hofmann MC (2001) Immunomagnetic isolation and long-term culture of mouse type A spermatogonia. J Androl 22:696–704

    Google Scholar 

  • Wang P, Suo LJ, Wang YF, Shang H, Li GX, Hu JH, Li QW (2014) Effects of GDNF and LIF on mouse spermatogonial stem cells proliferation in vitro. Cytotechnology 66:309–316

  • Yomogida K, Yagura Y, Tadokoro Y, Nishimune Y (2003) Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse sertoli cells. Biol Reprod 69:1303–1307

    Article  CAS  Google Scholar 

  • Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, Xiang J, Shi L, Yu Q, Zhang Y, Hou R, Wu J (2009) Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 11:631–636

Download references

Acknowledgments

This work was supported by grants from the National Science and Technology Support Program of China (No. 2011BAD19B02), the Agricultural Science and Technology Innovation Program (ASTIP) (cxgc-ias-06) and Beijing Innovation Team of Technology System in Dairy Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Chen, X., Zhu, H. et al. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells. Cytotechnology 67, 921–930 (2015). https://doi.org/10.1007/s10616-015-9850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9850-4

Keywords

Navigation