Skip to main content
Log in

The optimized condition for the isolation and in vitro propagation of mouse spermatogonial stem cells

  • Original Article
  • Published:
Biologia Futura Aims and scope Submit manuscript

Abstract

Introduction

The ability for isolation and in vitro propagation of spermatogonial stem cells (SSCs) offer a base for studies on spermatogenesis, and also contribute to the development of new methods for the preservation of livestock and animal genetic modification. The aim of this study was to find the optimal isolation and culture condition for efficient propagation of SSCs.

Methods

Three different isolation methods (mechanical, one-, and two-step enzymatic digestion) were compared to find the optimal isolation method. To find the best culture conditions for in vitro propagation, isolated SSCs were cultured for 7 days in three different culture conditions supplemented with 10% FBS, 0.25% BSA, and 10% KSR, respectively.

Results

The result showed that two-step enzymatic digestion produced a significant high fraction of live cells compared the other two. Non-adhering cells collected after 48 hr and cultured in BSA- and KSR-supplemented medium had a significantly high number of SSCs clump formation compared to FBS-supplemented group. The expression of CD9 confirmed that cell clumps were SSCs clumps. Spermatogonial stem cells cultured in BSA-supplemented medium were positive for NGN3 and PLZF expressions, whereas negative for Stra8 (a meiotic-specific gene) expression, suggesting that most of the cells were undifferentiated SSCs in BSA culture system. In contrast, in FBS- and KSR-supplemented groups, the SSCs were positive forNGN3, PLZF, and Stra8.

Conclusion

These data revealed that two-step enzymatic digestion is the best method for the isolation, and 0.25% BSA-supplemented culture condition is effective for optimal in vitro propagation of SSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E. L., Baltus, A. E., Roepers-Gajadien, H. L., Hassold, T. J., de Rooij, D. G., van Pelt, A. M., Page, D. C. (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc. Natl. Acad. Sci. U. S A. 105, 14976–14980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoshima, K., Baba, A., Makino, Y., Okada, Y. (2013) Establishment of alternative culture method for spermatogonial stem cells using knockout serum replacement. PLoS One 8, sill 15.

    Article  Google Scholar 

  • Barnes, D., Sato, G (1980) Serum-free cell culture: a unifying approach. Cell 22, 649–655.

    Article  CAS  PubMed  Google Scholar 

  • Bellve, A. R., Cavicchia, J. C., Millette, C. F., O’Brien, D. A., Bhatnagar, Y. M., Dym, M. (1977) Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J. Cell Biol. 74, 68–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherny, R. A., Stokes, T. M., Merei, J., Lorn, L., Brandon, M. R., Williams, R. L. (1994) Strategies for the isolation and characterization of bovine embryonic stem cells. Reprod. Fertil. Dev. 6 569–575.

    Article  CAS  PubMed  Google Scholar 

  • De Miguel, M. P., De Boer-Brouwer, M., Paniagua, R., van den Hurk, R., De Rooij, D. G., Van Dissel-Emiliani, F. M. (1996) Leukemia inhibitory factor and ciliary neurotropic factor promote the survival of Sertoli cells and gonocytes in coculture system. Endocrinology 137, 1885–1893.

    Article  PubMed  Google Scholar 

  • Dym, M., Jia, M. C., Dirami, G., Price, J. M., Rabin, S. J., Mocchetti, I., Ravindranath, N. (1995) Expression of c-kit receptor and its autophosphorylation in immature rat type A spermatogonia. Biol. Reprod. 52, 8–19.

    Article  CAS  PubMed  Google Scholar 

  • Dym, M., Kokkinaki, M., He, Z. (2009) Spermatogonial stem cells: mouse and human comparisons. Birth Defects Res. C Embryo Today 87, 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Forbes, C. M., Flannigan, R., Schlegel, P. N. (2018) Spermatogonial stem cell transplantation and male infertility: current status and future directions. Arab. J. Urol. 16, 171–180.

    Article  PubMed  Google Scholar 

  • Galuppo, A. G (2015) Spermatogonial stem cells as a therapeutic alternative for fertility preservation of prepubertal boys. Einstein (Sao Paulo) 13, 637–639.

    Article  Google Scholar 

  • Hayashi, I., Sato, G H. (1976) Replacement of serum by hormones permits growth of cells in a defined medium. Nature 259, 132–134.

    Article  CAS  PubMed  Google Scholar 

  • He, Z., Kokkinaki, M., Jiang, J., Dobrinski, I., Dym, M. (2010) Isolation, characterization, and culture of human spermatogonia. Biol. Reprod. 82, 363–372.

    Article  CAS  PubMed  Google Scholar 

  • Hermann, B. P., Sukhwani, M., Winkler, F., Pascarella, J. N., Peters, K. A., Sheng, Y., Valli, H., Rodriguez, M., Ezzelarab, M., Dargo, G., Peterson, K., Masterson, K., Ramsey, C., Ward, T., Lienesch, M., Volk, A., Cooper, D. K., Thomson, A. W., Kiss, J. E., Penedo, M. C., Schatten, G P., Mitalipov, S., Orwig, K. E. (2012) Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 11, 715–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrid, M., Davey, R. J., Hutton, K., Colditz, I. G., Hill, J. R. (2009) A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod. Fertil. Dev. 21, 393–399.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, M.-C, Braydich-Stolle, L., Dym, M. (2005) Isolation of male germ-line stem cells; influence of GDNF. Dev. Biol. 279, 114–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honaramooz, A., Behboodi, E., Blash, S., Megee, S. O., Dobrinski, I. (2003) Germ cell transplantation in goats. Mol. Reprod. Dev. 64, 422–428.

    Article  CAS  PubMed  Google Scholar 

  • Izadyar, F., Spierenberg, G T., Creemers, L. B., den Ouden, K., de Rooij, D. G (2002) Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124, 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Jan, S. Z., Hamer, G., Repping, S., de Rooij, D. G., Van Pelt, A. M. M., Vormer, T. L. (2012) Molecular control of rodent spermatogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 1822, 1838–1850.

    Article  CAS  Google Scholar 

  • Jurewicz, M., Hillelsohn, J., Mehta, S., Gilbert, B. R. (2018) Fertility preservation in pubertal and pre-pubertal boys with cancer. Pediatr. Endocrinol. Rev. 15, 234–243.

    PubMed  Google Scholar 

  • Kanatsu-shinohara, M., Toyokuni, S., Shinohara, T. (2004) CD9 is a surface marker on mouse and rat male germline stem cells. Biol. Reprod. 70, 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, H., Avarbock, M. R., Brinster, R. L. (2004a) Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 71, 722–731.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, H., Avarbock, M. R., Brinster, R. L. (2004b) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. U. S. A. 101, 16489–16494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, L. A., Seandel, M. (2013) Serial enrichment of spermatogonial stem and progenitor cells (SSCs) in culture for derivation of long-term adult mouse SSC lines. J. Vis. Exp. 72, e50017.

  • Meng, X., Lindahl, M., Hyvonen, M. E., Parvinen, M., de Rooij, D. G., Hess, M. W., Raatikainen-Ahokas, A., Sainio, K., Rauvala, H., Lakso, M., Pichel, J. G., Westphal, H., Saarma, M., Sariola, H. (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493.

    Article  CAS  PubMed  Google Scholar 

  • Pramod, R. K., Mitra, A. (2014) In vitro culture and characterization of spermatogonial stem cells on Sertoli cell feeder layer in goat (Capra hircus). J. Assist. Reprod. Genet. 31, 993–1001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Casuriaga, R., Geisinger, A., Lopez-Carro, B., Porro, V., Wettstein, R., Folle, G. A. (2009) Ultra-fast and optimized method for the preparation of rodent testicular cells for flow cytometric analysis. Biol. Proced Online 11, 184–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou, M., Miyauchi, H. (2016) Gametogenesis from pluripotent stem cells. Cell Stem Cell 18, 721–735.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., Katagiri, K., Gohbara, A., Inoue, K., Ogonuki, N., Ogura, A., Kubota, Y., Ogawa, T. (2011) In vitro production of functional sperm in cultured neonatal mouse testes. Nature 471, 504–507.

    Article  CAS  PubMed  Google Scholar 

  • Silva, R. C., Costa, G. M., Lacerda, S. M., Batlouni, S. R., Soares, J. M., Avelar, G. F., Bottger, K. B., Silva, S. F. Jr., Nogueira, M. S., Andrade, L. M., Franca, L. R. (2013) Germ cell transplantation in felids: a potential approach to preserving endangered species. J. Androl. 33, 264–276.

    Article  Google Scholar 

  • Tegelenbosch, R. A., de Rooij, D. G. (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 Fl hybrid mouse. Mutat. Res. 290, 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, S., Sukeno, M., Nabeshima, Y.-I. (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317, 1722–1726.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilong An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibtisham, F., Zhao, Y., Wu, J. et al. The optimized condition for the isolation and in vitro propagation of mouse spermatogonial stem cells. BIOLOGIA FUTURA 70, 79–87 (2019). https://doi.org/10.1556/019.70.2019.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/019.70.2019.10

Keywords

Navigation