Skip to main content

Advertisement

Log in

In vitro genotoxic effects of ZnO nanomaterials in human peripheral lymphocytes

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In this study, possible genotoxic effects of zinc oxide (ZnO) nanoparticles were investigated in cultured human peripheral lymphocytes by using chromosome aberrations and micronucleus assays (MN). For this purpose, the cells were treated with ZnO (1, 2, 5, 10, 15 and 20 μg/mL) for 24 and 48 h. In this research, four types of chromosome aberrations were observed as chromatid and chromosome breaks, fragment and dicentric chromosomes. ZnO induced significant increase of the ratio of chromosomal aberrations as well as percentage of abnormal cells at concentrations of 1, 5, 10 and 20 μg/mL in 24 h treatments. In 48 h treatments, while ZnO nanomaterials induced significant increase of the percentage of abnormal cells only at a concentration of 10 μg/mL, and of chromosome aberration per cell in comparison to the control at concentrations of 5 and 10 μg/mL. On the other hand, this material significantly increased the micronuclei frequency (MN) at concentrations of 10 and 15 μg/mL in comparison to the control. Cytokinesis-block proliferation index was not affected by ZnO treatments. It also decreased the mitotic index in all concentrations at 24 h but not at 48 h. The present results indicate that ZnO nanoparticles are clastogenic, mutagenic and cytotoxic to human lymphocytes in vitro at specific concentrations and time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ada K, Gökgöz M, Önal M, Sarıkaya Y (2008) Preparation and characterization of a ZnO powder with the hexagonal plate particles. Powder Technol 18:285–291

    Article  Google Scholar 

  • Ahmad S, Yasmin R (1992) Effects of methyl paration and tri-miltox on the mitosis of Allium cepa. Cytologia 57:155–160

    Article  CAS  Google Scholar 

  • Aksoy H, Yılmaz S, Mustafa Ç, Yüzbasioglu D, Ünal F (2006) Genotoxicity study in lymphocytes of offset printing workers. J Appl Toxicol 26:10–15

    Article  CAS  Google Scholar 

  • Albertini RJ, Anderson D, Douglas GR et al (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International programme on chemical safety. Mutat Res 463:111–172

    Article  CAS  Google Scholar 

  • Becheri A, Durr M, Lo Nostro P, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689

    Article  CAS  Google Scholar 

  • Bergeron S, Archambault E (2005) Canadian stewardship practices for environmental nanotechnology, science-metrix. http://www.science-metrix.com/pdf/SM_2004_016_EC_Report_Stewarship_Nanotechnology_Environment.pdf. Accessed 5 Oct 2012

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  CAS  Google Scholar 

  • Bryant PE (1998) Mechanisms of radiation-induced chromatid breaks. Mutat Res 404:107–111

    Article  CAS  Google Scholar 

  • Carrano AV, Natarajan AT (1988) Consideration for population monitoring using cytogenetic techniques. Mutat Res 204:379–406

    Article  CAS  Google Scholar 

  • Clausen CA, Green F, Kartal SN (2010) Weatherability and leach resistance of wood impregnated with nano-zinc oxide. Nanoscale Res Lett 5:1464–1467

    Article  CAS  Google Scholar 

  • Couteau C, Alami S, Guitton M, Paparis E, Coiffard LJ (2008) Mineral filters in sunscreen products-comparison of the efficacy of zinc oxide and titanium dioxide by in vitro method. Pharmazie 63:58–60

    CAS  Google Scholar 

  • Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154

    Article  CAS  Google Scholar 

  • Dufour KE, Kumaravel T, Nohynek JG, Kirkland D, Toutain H (2006) Clastogenicity, photo-clastogenicity or pseudo-calastogenicity: genotoxic effects of zinc oxide in the dark, in pre-irradiation or simultaneously irradiated chinese hamster ovary cells. Mutat Res 607:215–224

    Article  CAS  Google Scholar 

  • Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23:1365–1371

    Article  CAS  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Prot 2:1084–1104

    Article  CAS  Google Scholar 

  • Fenech M, Bonassi S (2011) The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis 26:43–49

    Article  CAS  Google Scholar 

  • Gélis C, Girard S, Mavon A, Delverdier M, Paillous N, Vicendo P (2003) Assessment of the skin photoprotective capacities of an organo-mineral broad-spectrum sunblock on two ex vivo skin models. Photodermatol Photoimmunol Photomed 19:242–253

    Article  Google Scholar 

  • Gerloff K, Albrecht C, Boots WA, Förster I, Schins FPR (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco2 cells. Nanotoxicology 3:355–364

    Article  CAS  Google Scholar 

  • Hanley C, Layne J, Punnoose A, Reddy K, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103

    Article  Google Scholar 

  • Hidaka H, Kobayashi H, Koike T, Sato T, Serpone N (2006) DNA damage photoinduced by cosmetic pigments and sunscreen agents under solar exposure and artificial UV illumination. J Oleo Sci 55:249–261

    Article  CAS  Google Scholar 

  • Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:219–231

    Article  CAS  Google Scholar 

  • Horie M, Fujita K (2011) Chapter four-toxicity of metal oxides nanoparticles. Adv Mol Toxicol 5:145–178

    Article  Google Scholar 

  • Inoue A, Yokomori K, Tanabe H, Mizusawa H, Sofuni T, Hayashi Y, Tsuchida Y, Shimatake H (1997) Extensive genetic heterogeneity in the neuroblastoma cell line NB(TU)1. Int J Cancer 72:1070–1077

    Article  CAS  Google Scholar 

  • IZA, International Zinc Association (2007) Zinc oxide applications. http://www.znoxide.org/applications.html. Accessed 29 June 2012

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Tox Hazard Subs Environ Eng 41:2699–2711

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122

    Article  CAS  Google Scholar 

  • Kelly SA, Havrilla CM, Brady TC, Abramo KH, Levin ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106:375–384

    Article  CAS  Google Scholar 

  • Kim YH, Fazlollahi F, Kennedy MI, Yacobi RN, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED (2010) Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Resp Crit Care 182:1389–1409

    Google Scholar 

  • Kirsch-Volders M, Plas G, Elhajouji A, Lukamowicz M, Gonzalez L, Loock KV, Decordier I (2011) The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol 85:873–899

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 6:620–650

    Article  Google Scholar 

  • Kullavanijaya P, Lim WH (2005) Photoprotection. J Am Acad Dermatol 52:937–958

    Article  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  Google Scholar 

  • Li CH, Shen CC, Cheng YW, Huang SH, Wu CC, Kao CC, Liao JW, Kang JJ (2012) Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6:746–756

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticle: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  Google Scholar 

  • Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39

    Article  CAS  Google Scholar 

  • Lockman P, Oyewumi M, Koziara J, Roder KE, Mumper RJ, Allen DD (2003) Brain uptake of thiamine-coated nanoparticles. J Control Release 93:271–282

    Article  CAS  Google Scholar 

  • Logotheidis S (2006) Nanotechnology in medicine: the medicine of tomorrow and nanomedicine. Hippokratia 10:7–21

    Google Scholar 

  • Luther W, Nass R, Campbell R et al (2004) Technological analysis. Industrial application of nanomaterials—changes and risks. Future Technologies Division, Düsseldorf. Futur Technol 54:1–111

    Google Scholar 

  • Maier T, Korting HC (2005) Sunscreens-which and what for? Skin Pharmacol Physiol 18:253–262

    Article  CAS  Google Scholar 

  • Matsunaga T, Tomada R, Nakajima T, Wake H (1985) Photochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214

    Article  CAS  Google Scholar 

  • Meyer K, Rajanahalli P, Ahamed M, Rowe JJ, Hong Y (2011) ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol In Vitro 25:1721–1726

    Article  CAS  Google Scholar 

  • Mitchnick MA, Fairhurst D, Pinnel SR (1999) Microfine zinc oxide (Zcote) as a photostable UVA/UVB sunblock agent. J Am Acad Dermatol 40:85–90

    Article  CAS  Google Scholar 

  • Moorer WR, Genet JM (1982) Antibacterial activity of gutta-percha cones attributed to the zinc oxide component. Oral Surg Oral Med Oral Pathol 53:508–517

    Article  CAS  Google Scholar 

  • Musarrat J, Saquib Q, Azam A, Naqvi HAS (2009) Zinc oxide nanoparticles-induced DNA damage in human lymphocytes. Int J Nanoparticles 2:402–415

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • NCPI, Nanotechnology Consumers Products Inventory (2012) On-line inventory of nanotechnology-based consumer products. http://www.nanotechproject.org/inventories/consumer/analysis_draft/. Accessed 25 June 2012

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Ng CT, Li JJ, Bay BH, Yung LY (2010) Current studies into the genotoxic effects of nanomaterials. J Nucleic Acids 2010:12. doi:10.4061/2010/947859

  • Nohynek GJ, Dufour EK, Roberts MS (2008) Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 21:136–149

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H; ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi:10.1186/1743-8977-2-8

  • Ostiguy C, Soucy B, Lapointe G, Woods C, Ménard L, Trottier M (2008) Health effects of nanoparticles, 2nd edn. Studies and research projects, report no R-589, IRSST, Quebec

  • Reddy K, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:2139021–2139023

    Google Scholar 

  • Rikans LE, Hornbrook KR (1997) Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta 1362:116–127

    Article  CAS  Google Scholar 

  • SCENIHR, EU Scientific Committee on Emerging and Newly Identified Health Risk Report (2007) http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_004c.pdf. Accessed 29 June 2012

  • Sevinc BA, Hanley L (2010) Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B Appl Biomater 94:22–31

    Google Scholar 

  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218

    Article  CAS  Google Scholar 

  • Sharma V, Anderson D, Dhawan A (2011) Zinc oxide nanoparticles ınduce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol 7:98–99

    Article  CAS  Google Scholar 

  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  Google Scholar 

  • Someya H, Higo Y, Ohno M, Tsutsui TW, Tsutsui T (2008) Clastocenig activity of seven endodontic medications used in dental practice in human dental pulp cells. Mutat Res 650:39–47

    Article  CAS  Google Scholar 

  • Stone V, Donaldson K (2006) Nanotoxicology: signs of stress. Nat Nanotechnol 1:23–24

    Article  CAS  Google Scholar 

  • Surrales J, Xamena N, Creus A, Catalan A, Norppa H, Marcos R (1995) Induction of micronuclei by five pyrethroid insecticides in whole blood and isolated human lymphocytes cultures. Mutat Res 341:169–184

    Article  Google Scholar 

  • Wang B, Feng W, Zhao Y, Xing G, Chai Z, Wang H, Jia G (2005) Status of study on biological and toxicological effects of nanoscale materials. Sci China Ser B Chem 48:385–394

    Google Scholar 

  • Wardak A, Gorman ME, Swami N, Deshpande S (2008) Identification of risks in the life cycle of nanotechnology-based products. J Ind Ecol 12:435–448

    Article  CAS  Google Scholar 

  • WHO, World Health Organization (1998) INTERSUN: the global UV project. Protection against exposure to ultraviolet radiation. World Health Organization, Geneva

    Google Scholar 

  • Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78

    Article  Google Scholar 

  • Yilmaz S, Aksoy H, Ünal F, Çelik M, Yüzbaşıoğlu D (2008) Genotoxic action of fungicide conan 5FL (Hexaconazole) on mammalian cells ın vivo and ın vitro. Russ J Genet 44:273–278

    Article  CAS  Google Scholar 

  • Yoshida R, Kitamura D, Maenosono S (2009) Mutagenicity of water—soluble ZnO nanoparticles in Ames test. J Toxicol Sci 34:119–122

    Article  CAS  Google Scholar 

  • Zhang S, Saebfar H (2010) Chemical information call-in candidate: nano zinc oxide, California Dept. of Toxic substances control, September, 1–11

  • Zheng Y, Li R, Wang Y (2009) In vitro and in vivo biocompatibilitye studies of ZnO nanoparticles. Int J Mod Phys B 23:1566–1571

    Article  CAS  Google Scholar 

  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2009) The impact of ZnO nanoparticle aggregates on the embryonic development of Zebrafish (Danio reriro). Nanotechnology 20:195103

    Article  Google Scholar 

Download references

Acknowledgments

The authors thanks to the Sakarya University for founding this research (grant 2009-50-01-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Aksoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gümüş, D., Berber, A.A., Ada, K. et al. In vitro genotoxic effects of ZnO nanomaterials in human peripheral lymphocytes. Cytotechnology 66, 317–325 (2014). https://doi.org/10.1007/s10616-013-9575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9575-1

Keywords

Navigation