Skip to main content

Advertisement

Log in

A coupled MFE poromechanical model of a large-scale load experiment at the coastland of Venice

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

A three-dimensional fully coupled mixed finite element (MFE) model based on Biot’s consolidation equations is implemented to simulate the geomechanical response of a large-scale 5-year long loading/unloading test performed at the Venice coastland, Italy. The model uses linear piecewise polynomials and the lowest order Raviart–Thomas mixed space to represent the porous medium motion and the groundwater flow rate, respectively. The approach ensures an element-wise mass conservative formulation while preserving the stability of the numerical solution and providing at the same time an accurate calculation of the flow field. With the aim of characterizing the Late Pleistocene and Holocene deposits above, which the MoSE project, i.e. the mobile barriers to protect Venice from acqua alta, is under implementation, a 20-m radius, 6.7-m tall vertically walled cylinder was built from September 2002 to March 2003 and removed in June 2007. The maximum load exerted on the ground at the completion of the building activity was 0.105 MPa. The land displacements were accurately monitored at various depths and the center and outer boundary of the embankment by sliding deformeters, leveling, global positioning system, and persistent scatterer interferometry. Moreover, in situ tests and standard lab tests were performed to define the hydrological and geomechanical properties of the soil underlying the cylinder. The model addresses the actual lithostratigraphy of the subsurface down to 50-m depth below the embankment and prescribes the land surface loading versus time as an external source of strength. A hysteretic elastic constitutive law, with the Young modulus E in the loading phase between 2 to 36 Mpa according to lithology, a ratio s=15 of loading to unloading cycle E, and a small adjustment of the hydrological parameters allow to predict quite satisfactorily most of the observed pressure behavior, together with vertical and horizontal displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berengo, V., Leoni, M., Simonini, P.: Numerical modelling of the time-dependent behaviour of Venice lagoon silts. In: Singh, D.N. (ed.) Proceedings of 12th International Conference of the International Association for Computer Methods and Advances in Geomechanics, pp. 929–936 (2008)

  2. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  3. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer-Verlag, New York (1991)

    Book  Google Scholar 

  4. Buckley, S.M., Rosen, P.A., Hensley, S., Tapley, B.D.: Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. J. Geophys. Res. 108 (B11), 2542 (2003)

    Article  Google Scholar 

  5. Carbognin, L., Teatini, P., Tomasin, A., Tosi, L.: Global change and relative sea level at Venice: what impact in term of flooding. Clim. Dyn. 35, 1039–1047 (2010)

    Article  Google Scholar 

  6. Castelletto, N., Gambolati, G., Teatini, P.: Geological CO2 sequestration in multi-compartment reservoirs: geomechanical challenges. J. Geophys. Res. 118 (2013). doi:10.1002/jgrb.50180

  7. Cola, S., Simonini, P.: Mechanical behaviour of silty soils in the Venice lagoon as a function of their grading properties. Canadian Geotech. J 39(4), 879–893 (2002)

    Article  Google Scholar 

  8. Coelho, L.C., Soares, A.C., Ebecken, N.F., Alves, J.L.D., Landau, L.: Modelling mechanical behaviour of limestone under reservoir conditions. Int. J. Numer. Anal. Methods Geomech. 30, 1477–1500 (2006)

    Article  Google Scholar 

  9. Coussy, O.: Poromechanics. Wiley, Chichester, England (2004)

    Google Scholar 

  10. Dautriat, J., Gland, N., Dimanov, A., Raphanel, J.: Hydromechanical behavior of heterogeneous carbonate rock under proportional triaxial loadings. J. Geophys. Res. 116, B01205 (2011)

    Google Scholar 

  11. de Kock, A.J., Johnson, T.J., Hagiwara, T., Zea, H.A., Santa, S.: Gulf of Mexico subsidence monitoring project with a new formation-compaction monitoring tool. SPE Drill. Complet. 13 (6), 223–230 (1998)

    Article  Google Scholar 

  12. Ferronato, M., Gambolati, G., Teatini, P., Baú, D.: Interpretation of radioactive marker measurements in the Northern Adriatic gas fields. SPE Reserv. Eval. Eng. 6 (6), 401–412 (2003)

    Article  Google Scholar 

  13. Ferronato, M., Pini, G., Gambolati G.: The role of preconditioning in the solution to FE coupled consolidation equations by Krylov subspace methods. Int. J. Numer. Anal. Methods Geomech. 33, 405–423 (2009)

    Article  Google Scholar 

  14. Ferronato, M., Bergamaschi, L., Gambolati, G.: Performance and robustness of block constraint preconditioners in finite element coupled consolidation models. Int. J. Numer. Meth. Eng. 81, 381–402 (2010)

    Google Scholar 

  15. Ferronato, M., Castelletto, N., Gambolati, G.: A fully 3-D mixed finite element model of Biot consolidation. J. Comp. Phys. 229, 4813–4830 (2010)

    Article  Google Scholar 

  16. Freund, R.W., Nachtingal, N.M.: A new Krylov-subspace method for symmetric indefinite linear systems. In: Proceedings of 14th IMACS World Congress on Computational and Applied Mathematics, pp. 1253–1256 (1994)

  17. Gambolati, G., Teatini, P., Tomasi, L.: Stress-strain analysis in productive gas/oil reservoirs. Int. J. Numer. Anal. Methods Geomech. 23 (13), 1495–1519 (1999)

    Article  Google Scholar 

  18. Gentilomo, G., Cecconi, G.: Flood protection system designed for Venice. Hydropower & Dams 2(IV), 46–52 (1997)

    Google Scholar 

  19. Gottardi, G., Tonni, L.: A comparative study of piezocone tests on the silty soils of the Venice lagoon (Treporti Test Site). In: Viana da Fonseca, A., Mayne P.W. (eds.) Geotechnical and Geophysical Site Characterization, Vol. 2, pp 1643–1649. Millpress, Rotterdam (2004)

  20. Hettema, M.H.H., Schutjens, P.M.T.M., Verboom, B.J.M., Gussinklo, H.J.: Production-induced compaction of a sandstone reservoir: the strong influence of stress path. SPE Reservoir Eval. Eng. 3(4), 342–347 (2000)

    Article  Google Scholar 

  21. Hoffmann, J., Galloway, D. L., Zebker, H. A.: Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour. Res. 39(2), 1031 (2003)

    Article  Google Scholar 

  22. Holzer, T.L., Davis, S.N., Logfren, B.E.: Faulting caused by groundwater extraction in Southcentral Arizona. J. Geophys. Res. 84(B2), 603–612 (1979)

    Article  Google Scholar 

  23. Hueckel, T., Cassiani, G., Tao, F., Pellegrino, A., Fioravante, V.: Effect of aging on compressibility of oil/gas bearing sediments and their subsidence. J. Eng. Mech-ASCE 127(11), 926–938 (2001)

    Google Scholar 

  24. Hughes, T.J.R.: The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs, NJ (1987)

    Google Scholar 

  25. Jamiolkowski, M., Ricceri, G., Simonini, P.: Safeguarding Venice from high tides: site characterization and geotechnical problems. In: Hamza M. et al. (eds.) Proceedings of 17th ICSMGE International Conference on Soil Mechanics and Geotechnical Engineering. IOS Press Publ (2009)

  26. Jha, B., Juanes, R.: A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics. Acta Geotech. 2(3), 139–153 (2007)

    Article  Google Scholar 

  27. Kim, J., Tchelepi, H.A., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits. Comp. Meth. Appl. Mech. Eng. 200, 1591–1606 (2011)

    Article  Google Scholar 

  28. King, N.E., Argus, D., Langbein, J., Agnew, D.C., Bawden, G., Dollar, R.S., Liu, Z., Galloway, D., Reichard, E., Yong, A., Webb, F.H., Bock, Y., Stark, K., Barseghian, D.: Space geodetic observation of expansion of the San Gabriel Valley, California, aquifer system, during heavy rainfall in winter 2004–2005. J. Geophys. Res. 112, B03409 (2007)

    Google Scholar 

  29. Kovari, K., Amstad, C.: A new method of measuring deformations in diaphragm walls and piles. Geotechnique 22(4), 402–406 (1982)

    Article  Google Scholar 

  30. Leoni, M., Karstunen, M., Vermeer, P.A.: Anisotropic creep model for soft soils. Géotechnique 58(3), 215–226 (2008)

    Article  Google Scholar 

  31. Marchetti, S., Monaco, P., Calabrese, M., Totani, G.: DMT-predicted vs measured settlements under a full-scale instrumented embankment at Treporti (Venice), Italy. In: Viana da Fonseca, A., Mayne, P.W. (eds.) Geotechnical and Geophysical Site Characterization, vol. 2, pp 1511–1518. Millpress, Rotterdam (2004)

    Google Scholar 

  32. Mayne, P., Mc Gillivray, A.: Seismic piezocone and seismic flat dilatomer tests at Treporti (Venice), Italy. In: Viana da Fonseca, A., Mayne P. W. (eds.) Geotechnical and Geophysical Site Characterization, vol. 2, pp 1695–1701. Millpress, Rotterdam (2004)

  33. Meckel, T.A., Ten Brink, U.S., Williams, S.J.: Sediment compaction rates and subsidence in deltaic plains: numerical constraints and stratigraphic influences. Basin Res. 19, 19–31 (2007)

    Article  Google Scholar 

  34. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17, 455–461 (2013)

    Article  Google Scholar 

  35. Muntendam, A.G., Fokker, P.A.: Unraveling reservoir compaction parameters through the inversion of surface subsidence observations. Comput. Geosci. 13, 43–55 (2009)

    Article  Google Scholar 

  36. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)

    Article  Google Scholar 

  37. Preisig, M., Prevost, J.H.: Fully coupled simulation of fluid injection into geomaterials with focus on nonlinear near-well behavior. Int. J. Numer. Anal. Methods Geomech. 36, 1023–1040 (2012)

    Article  Google Scholar 

  38. Raviart, P.A., Thomas J.M.: A mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Element Method, Lecture Notes in Math, vol. 606. Springer-Verlag, New York (1977)

    Google Scholar 

  39. Rinaldi, A.P., Rutqvist, J.: Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO 2 injection well, In Salah, Algeria. Int. J. Greenh. Gas Control 12, 155–167 (2013)

    Article  Google Scholar 

  40. Roeloffs, E.: Tidal calibration of plate boundary observation borehole strainmeters: roles of vertical and shear coupling. J. Geophys. Res. 115, B06405 (2010)

    Google Scholar 

  41. Schmidt, D.A., Bürgmann, R.: Time-dependent land uplift and subsidence in the Santa Clara Valley, California, from a large interferometric synthetic aperture radar data set. J. Geophys. Res. 108(B9) (2003)

  42. Simonini, P.: Characterization of the Venice lagoon silts from in-situ tests and the performance of a test embankment. In: Viana da Fonseca, A., Mayne P.W. (eds.) Geotechnical and Geophysical Site Characterization, Vol. 1, pp 187–207. Millpress, Rotterdam (2004)

  43. Simonini, P., Cola, S.: Use of piezocone to predict maximum stiffness of Venetian soil. J. Geotech. Geoenv. Engng. ASCE 126(4), 378–381 (2000)

    Article  Google Scholar 

  44. Simonini, P., Ricceri, G., Cola, S.: Geotechnical characterization and properties of Venice lagoon heterogeneous silts. In: Phoon, K. K. et al. (eds.) Characterization and Engineering Properties of Natural Soils, pp 2289–2328. Taylor & Francis, London (2007)

    Google Scholar 

  45. Strozzi, T., Teatini, P., Tosi, L.: TerraSAR-X reveals the impact of the mobile barrier works on Venice coastland stability. Remote Sens. Environ. 113(12), 2682–2688 (2009)

    Article  Google Scholar 

  46. Teatini, P., Ferronato, M., Gambolati, G., Gonella, M.: Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend 42, W01406 (2006)

  47. Teatini, P., Castelletto, N., Ferronato, M., Gambolati, G., Janna, C., Cairo, E., Marzorati, D., Colombo, D., Ferretti, A., Bagliani, A., Bottazzi, A.: Geomechanical response to seasonal gas storage in depleted reservoirs: a case study in the Po River basin, Italy. J. Geophys. Res. 116, F02002 (2011)

    Google Scholar 

  48. Tosi, L., Teatini, P., Bincoletto, L., Simonini, P., Strozzi, T.: Integrating geotechnical and interferometric SAR measurements for secondary compressibility characterization of coastal soils. Surv. Geophys. 33 (5), 907–926 (2012)

    Article  Google Scholar 

  49. Tosi, L., Strozzi, T., Teatini, P.: Cosmo-SkyMed versus TerraSAR-X -based interferometry for monitoring the MOSE settlements at the Venical Lagoon inlets. In: IGARSS 2012, International Geoscience and Remote Sensing Symposium, Institute of Electrical and Electronics Engineers, Inc., pp. 2837–2840 (2012)

  50. Trautwein, U., Huenges, E.: Poroelastic behaviour of physical properties in Rotliegend sandstones under uniaxial strain. Int. J. Rock Mech. Min. Sci 42(7–8), 924–932 (2005)

    Article  Google Scholar 

  51. USEPA: Technical program overview: underground injection control regulation. Technical Report EPA 816-R-02-025, U.S. Environmental Protection Agency, Washington, D.C (2002)

  52. Vermeer, P.A., Neher, H.P.: A soft soil model that accounts for creep. In: Brinkgreve, R.B.J. (ed.) Proceedings of the International Symposium Beyond 2000 in Computational Geotechnics, pp 249–261. Balkema, Rotterdam (1999)

    Google Scholar 

  53. Wheeler, M.G., Gai, X.: Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity. Numer. Meth. Part D. E 23, 785–797 (2007)

    Article  Google Scholar 

  54. White, J.A., Borja, R.I.: Block-preconditioned Newton–Krylov solvers for fully coupled flow and geomechanics. Comput. Geosci. 15, 647–659 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Teatini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelletto, N., Gambolati, G. & Teatini, P. A coupled MFE poromechanical model of a large-scale load experiment at the coastland of Venice. Comput Geosci 19, 17–29 (2015). https://doi.org/10.1007/s10596-014-9450-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-014-9450-y

Keywords

Navigation