Skip to main content
Log in

Block-preconditioned Newton–Krylov solvers for fully coupled flow and geomechanics

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The focus of this work is efficient solution methods for mixed finite element models of variably saturated fluid flow through deformable porous media. In particular, we examine preconditioning techniques to accelerate the convergence of implicit Newton–Krylov solvers. We highlight an approach in which preconditioners are built from block-factorizations of the coupled system. The key result of the work is the identification of effective preconditioners for the various sub-problems that appear within the block decomposition. We use numerical examples drawn from both linear and nonlinear hydromechanical models to test the robustness and scalability of the proposed methods. Results demonstrate that an algebraic multigrid variant of the block preconditioner leads to mesh-independent convergence, good parallel efficiency, and insensitivity to the material parameters of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gawin, D., Baggio, P., Schrefler, B.A.: Coupled heat, water and gas flow in deformable porous media. Int. J. Numer. Methods Fluids 20, 969–987 (1995)

    Article  MATH  Google Scholar 

  2. Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis of partially saturated soil. Comput. Methods Appl. Mech. Eng. 193(27–29), 2885–2910 (2004)

    Article  MATH  Google Scholar 

  3. Young, Y.L., White, J.A., Xiao, H., Borja, R.I.: Tsunami-induced liquefaction failure of coastal slopes. Acta Geotech. 4, 17–34 (2009)

    Article  Google Scholar 

  4. Borja, R.I., White, J.A.: Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotech. 1–14 (2010)

  5. Ferronato, M., Bergamaschi, L., Gambolati, G.: Performance and robustness of block constraint preconditioners in finite element coupled consolidation problems. Int. J. Numer. Methods Eng. 81(3), 381–402 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Wan, J.: Stabilized Finite Element Methods for Coupled Geomechanics and Multiphase Flow. Ph.D. thesis, Stanford University (2002)

  7. Minkoff, S.E., Stone, C.M., Bryant, S., Peszynska, M., Wheeler, M.F.: Coupled fluid flow and geomechanical deformation modeling. J. Pet. Sci. Eng. 38(1–2), 37–56 (2003)

    Article  Google Scholar 

  8. Jha, B., Juanes, R.: A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics. Acta Geotech. 2(3), 139–153 (2007)

    Article  Google Scholar 

  9. Hayashi, K., Willis-Richards, J., Hopkirk, R.J., Niibori, Y.: Numerical models of HDR geothermal reservoirs—a review of current thinking and progress. Geothermics 28(4–5), 507–518 (1999)

    Article  Google Scholar 

  10. Johnson, J.W., Nitao, J.J., Morris, J.P.: Reactive transport modeling of cap rock integrity during natural and engineered CO2 storage. In: Benson, S. (ed.) CO2 Capture Project Summary, vol. 2. Elsevier, Amsterdam (2004)

    Google Scholar 

  11. Rutqvist, J., Birkholzer, J.T., Tsang, C.F.: Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir–caprock systems. Int. J. Rock Mech. Min. Sci. 45(2), 132–143 (2008)

    Article  Google Scholar 

  12. Morris, J.P., Detwiler, R.L., Friedmann, S.J., Vorobiev, O.Y., Hao, Y.: The large-scale effects of multiple CO2 injection sites on formation stability. Energy Procedia 1(1), 1831–1837 (2009)

    Article  Google Scholar 

  13. Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems resulting from mixed approximation of elliptic problems. Math. Comput. 50(181), 1–17 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elman, H., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations. J. Comput. Phys. 227(3), 1790–1808 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. May, D.A., Moresi, L.: Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Phys. Earth Planet. Inter. 171(1–4), 33–47 (2008)

    Article  Google Scholar 

  16. Burstedde, C., Ghattas, O., Stadler, G., Tu, T., Wilcox, L.C.: Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems. Comput. Methods Appl. Mech. Eng. 198(21–26), 1691–1700 (2009)

    Article  Google Scholar 

  17. Toh, K.C., Phoon, K.K., Chan, S.H.: Block preconditioners for symmetric indefinite linear systems. Int. J. Numer. Methods Eng. 60, 1361–1381 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  19. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  20. Borja, R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43(6), 1764–1786 (2006)

    Article  MATH  Google Scholar 

  21. Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1943)

    Book  Google Scholar 

  22. Bishop, A.W.: The principle of effective stress. Tekn. Ukebl. 39, 859–863 (1959)

    Google Scholar 

  23. Skempton, A.W.: Effective stress in soils, concrete and rocks. In: Pore Pressure and Suction in Soils, pp. 4–16. Butterworths, London (1961)

    Google Scholar 

  24. Nur, A., Byerlee, J.D.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76, 6414–6419 (1971)

    Article  Google Scholar 

  25. Borja, R.I., Koliji, A.: On the effective stress in unsaturated porous continua with double porosity. J. Mech. Phys. Solids (2009). doi:10.1016/j.jmps.2009.04.014

    Google Scholar 

  26. van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  27. Cryer, C.W.: A comparison of the three-dimensional consolidation theories of Biot and Terzaghi. Q. J. Mech. Appl. Math. 16(4), 401–412 (1963)

    Article  MATH  Google Scholar 

  28. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numer. 8, 129–151 (1974)

    MathSciNet  Google Scholar 

  29. Brezzi, F.: A discourse on the stability conditions for mixed finite element formulations. Comput. Methods. Appl. Mech. Eng. 82(1–3), 27–57 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Arnold, D.N.: Mixed finite element methods for elliptic problems. Comput. Methods Appl. Mech. Eng. 82, 281–300 (1990)

    Article  MATH  Google Scholar 

  31. Murad, M.A., Loula, A.F.D.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37, 645–667 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. White, J.A., Borja, R.I.: Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput. Methods Appl. Mech. Eng. 197(49–50), 4353–4366 (2008)

    Article  MATH  Google Scholar 

  33. Pastor, M., Li, T., Liu, X., Zienkiewicz, O.C., Quecedo, M.: A fractional step algorithm allowing equal order of interpolation for coupled analysis of saturated soil problems. Mech. Cohes.-Frict. Mater. 5(7), 511–534 (2000)

    Article  Google Scholar 

  34. Truty, A., Zimmermann, T.: Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media. Comput. Methods Appl. Mech. Eng. 195, 1517–1546 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dohrmann, C.R., Bochev, P.B.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods Fluids 46, 183–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bochev, P.B., Dohrmann, C.R.: A computational study of stabilized, low-order C 0 finite element approximations of Darcy equations. Comput. Mech. 38, 323–333 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Burman, E.: Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem. Numer. Methods Partial Differ. Equ. 24(1), 127–143 (2007)

    Article  MathSciNet  Google Scholar 

  38. White, J.A.: Stabilized Finite Element Methods for Coupled Flow and Geomechanics. Ph.D. thesis, Stanford University, Stanford, CA (2009)

  39. Benzi, M., Golub, G.H., Liesen, J: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Verfürth, R.: Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO. Anal. Numér. 18(2), 175–182 (1984)

    MATH  Google Scholar 

  41. Elman, H.C., Silvester, D.J., Wathen, A.J.: Iterative methods for problems in computational fluid dynamics. In: Iterative Methods in Scientific Computing, p. 271 (1997)

  42. Bangerth, W., Hartmann, R., Kanschat, G.: Deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24 (2007)

    Article  MathSciNet  Google Scholar 

  43. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. (in press, 2011)

  44. Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw. (submitted, 2011)

  45. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., et al.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sala, M., Heroux, M.: Robust algebraic preconditioners with IFPACK 3.0. Technical Report SAND-0662, Sandia National Laboratories (2005)

  47. Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: ML 5.0 smoothed aggregation user’s guide. Technical Report SAND2006-2649, Sandia National Laboratories (2006)

  48. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17, 16–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Verruijt, A.: Theory of Consolidation. In: An Introduction to Soil Dynamics, pp. 65–90 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, J.A., Borja, R.I. Block-preconditioned Newton–Krylov solvers for fully coupled flow and geomechanics. Comput Geosci 15, 647–659 (2011). https://doi.org/10.1007/s10596-011-9233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-011-9233-7

Keywords

Navigation