Skip to main content
Log in

Conservation genomics of an Australian cycad Cycas calcicola, and the Absence of Key Genotypes in Botanic Gardens

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Understanding the genetic diversity of wild populations is fundamental to conserving species in-situ and ex-situ. To aid conservation plans and to inform ex-situ conservation, we examined the genetic diversity of the cycad Cycas calcicola (Cycadaceae). Samples were collected from wild populations in the Litchfield National Park and Katherine regions in the Northern Territory, Australia. Additional samples were obtained from botanic garden plants that were originally collected in the Katherine region, Daly River and Spirit Hills in the Northern Territory, Australia. Using RADseq we recovered 2271 informative genome-wide SNPs, revealing low to moderate levels of gene diversity (uHe = 0.037 to 0.135), very low levels of gene flow, and significant levels of inbreeding (mean FIS = 0.491). Population structure and multivariate analysis showed that populations fall into two genetic groups (Katherine vs Litchfield + Daly River + Spirit Hills). Genetic differentiation was twice as high between populations of the Katherine and Litchfield regions (FST ~ 0.1) compared to within these two regions (FST ~ 0.05). Increasing population fragmentation together with high levels of inbreeding and very little gene flow are concerning for the future adaptability of this species. The results indicated that the ex-situ collections (1) had significantly lower genetic diversity than the wild populations, and (2) only partly capture the genetic diversity present, particularly because the Litchfield National Park populations are not represented. We recommend that ex-situ collections be expanded to incorporate the genetic diversity found in Litchfield National Park and to increase the number of representatives from Daly River/Spirit Hills, and that in-situ populations from the Katherine and Greater Litchfield regions be conserved as separate management units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

Data availability and material

RAW fastq sequinning files, assemblies and will be uploaded to NCBI GenBank after the initial review process has been completed, to be accessible for publication.

References

  • Ahrens CW et al (2017) Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain. Ann Bot 119(8):1267–1277

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen AN, Cook GD, Corbett LK, Douglas MM, Eager RW, Russell-Smith J, Woinarski JC (2005) Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Austral Ecol 30(2):155–167

    Article  Google Scholar 

  • Andrews KR et al (2014) Trade-offs and utility of alternative RADseq methods: reply to Puritz et al. Mol Ecol 23(24):5943–5946

    Article  CAS  PubMed  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22(3):341–345

    Article  CAS  PubMed  Google Scholar 

  • Bellusci F, Pellegrino G, Musacchio A (2009) Different levels of inbreeding depression between outcrossing and selfing Serapias species. Biol Plant 53(1):175–178

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera-Toledo D et al (2010) Allozyme diversity levels in two congeneric Dioon spp. (Zamiaceae, Cycadales) with contrasting rarities. Plant Syst Evol 290(1–4):115–125

    Article  CAS  Google Scholar 

  • Cabrera-Toledo D, González-Astorga J, Flores-Vázquez JC (2012) Fine-scale spatial genetic structure in two Mexican cycad species Dioon caputoi and Dioon merolae (Zamiaceae, Cycadales): Implications for conservation. Biochem Syst Ecol 40:43–48

    Article  CAS  Google Scholar 

  • Calonje M, Kay J, Griffith PM (2011) Propagation of cycad collections from seed: applied reproductive biology for conservation. Sibbaldia: J Bot Gard Hortic 9:79–96

    Article  Google Scholar 

  • Calonje M, Meerow AW, Knowles L, Knowles D (2013) Cycad biodiversity in the Bahamas Archipelago and conservation genetics of the threatened Zamia lucayana (Zamiaceae). Oryx 47(2):190–198

    Article  Google Scholar 

  • Calonje M, Stevenson DW, Stanberg L (2020) The world list of cycads, online edition [Internet]. 2013–2020. http://www.cycadlist.org. Accessed 28 Aug 2020

  • Cantrill DJ (2018) The Australasian virtual herbarium: tracking data usage and benefits for biological collections. Appl Plant Sci 6(2):e1026

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18(1):237–268

    Article  Google Scholar 

  • Chaw S-M et al (2005) A phylogeny of cycads (Cycadales) inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region. Mol Phylogenet Evol 37(1):214–234

    Article  CAS  PubMed  Google Scholar 

  • Chen SY, Zhang YJ, Wang XL, Sun JY, Xue Y, Zhang P, Qu LH (2012) Extremely low genetic diversity indicating the endangered status of Ranodon sibiricus (Amphibia: Caudata) and implications for phylogeography. PLoS ONE 7(3):e33378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang YC, Hung KH, Moore SJ, Ge XJ, Huang S, Hsu TW et al (2009) Paraphyly of organelle DNAs in Cycas Sect. Asiorientales due to ancient ancestral polymorphisms. BMC Evol Biol 9(1):161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cibrián-Jaramillo A, Daly AC, Brenner E, Desalle R, Marler TE (2010) When North and South don’t mix: genetic connectivity of a recently endangered oceanic cycad, Cycas micronesica, in Guam using EST-microsatellites. Mol Ecol 19(12):2364–2379

    PubMed  Google Scholar 

  • Cibrian-Jaramillo A, Hird A, Oleas N, Ma H, Meerow AW, Francisco-Ortega J, Griffith MP (2013) What is the conservation value of a plant in a botanic garden? Using indicators to improve management of ex situ collections. Bot Rev 79(4):559–577

    Article  Google Scholar 

  • Clugston JAR, Milne RR, Kenicer GJ, Overcast I, Nagalingum NS (2019) RADseq as a valuable tool for plants with large genomes—a case study in cycads. Mol Ecol Resour 19:1610–1622

    Article  CAS  PubMed  Google Scholar 

  • Cohen JI et al (1991) Ex situ conservation of plant genetic resources: global development and environmental concerns. Science 253(5022):866–872

    Article  CAS  PubMed  Google Scholar 

  • Da Silva JM, Donaldson JS, Reeves G, Hedderson TA (2012) Population genetics and conservation of critically small cycad populations: a case study of the Albany Cycad, Encephalartos latifrons (Lehmann). Biol J Lin Soc 105(2):293–308

    Article  Google Scholar 

  • Donaldson JS (2003) Cycads: status survey and conservation action plan. IUCN—the World Conservation Union

  • Dosmann MS (2006) Research in the garden: averting the collections crisis. Bot Rev 72(3):207–234

    Article  Google Scholar 

  • Drury C, Schopmeyer S, Goergen E, Bartels E, Nedimyer K, Johnson M, Lirman D (2017) Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity. Ecol Evol 7(16):6188–6200

    Article  PubMed  PubMed Central  Google Scholar 

  • Durel CE, Bertin P, Kremer A (1996) Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster). Theor Appl Genet 92(3–4):347–356

    Article  CAS  PubMed  Google Scholar 

  • Eaton DA, Overcast I (2020) ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36(8):2592–2594

    Article  CAS  PubMed  Google Scholar 

  • Ekué MR, Gailing O, Hölscher D, Sinsin B, Finkeldey R (2008) Population genetics of the cycad Encephalartos barteri ssp. barteri (Zamiaceae) in Benin with notes on leaflet morphology and implications for conservation. Belg J Bot 141(1):78–94

    Google Scholar 

  • Enßlin A, Sandner TM, Matthies D (2011) Consequences of ex situ cultivation of plants: genetic diversity, fitness and adaptation of the monocarpic Cynoglossum officinale L. in botanic gardens. Biol Conserv 144(1):272–278

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fant JB, Havens K, Kramer AT, Walsh SK, Callicrate T, Lacy RC, Smith PP (2016) What to do when we can’t bank on seeds: what botanic gardens can learn from the zoo community about conserving plants in living collections. Am J Bot 103:1541–1543

    Article  PubMed  Google Scholar 

  • Feng X, Wang Y, Gong X (2014) Genetic diversity, genetic structure and demographic history of Cycas simplicipinna (Cycadaceae) assessed by DNA sequences and SSR markers. BMC Plant Biol 14(1):187–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK, Widmer A (2017) Estimating genomic diversity and population differentiation–an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2004) A primer of conservation genetics. CR Biol 326:22–29

    Article  Google Scholar 

  • Gong YQ, Zhan QQ, Nguyen KS, Nguyen HT, Wang YH, Gong X (2015) The historical demography and genetic variation of the endangered Cycas multipinnata (Cycadaceae) in the red river region, examined by chloroplast DNA sequences and microsatellite markers. PLoS ONE 10(2):e0117719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Astorga J, Vovides AP et al (2008) Diversity and genetic structure of the endangered cycad Dioon sonorense (Zamiaceae) from Sonora, Mexico: Evolutionary and conservation implications. Biochem Syst Ecol 36(12):891–899

    Article  CAS  Google Scholar 

  • González-Varo JP, Albaladejo RG, Aparicio A, Arroyo J (2010) Linking genetic diversity, mating patterns and progeny performance in fragmented populations of a Mediterranean shrub. J Appl Ecol 47(6):1242–1252

    Article  Google Scholar 

  • Griffith MP, Calonje M, Meerow AW, Tut F, Kramer AT, Hird A, Husby CE (2015) Can a botanic garden cycad collection capture the genetic diversity in a wild population? Int J Plant Sci 176(1):1–10

    Article  Google Scholar 

  • Gutiérrez-Ortega JS, Salinas-Rodríguez MM, Ito T, Pérez-Farrera MA, Vovides AP, Martínez JF, Murakami M (2020) Niche conservatism promotes speciation in cycads: the case of Dioon merolae (Zamiaceae) in Mexico. New Phytol 227(6):1872–1884

    Article  PubMed  CAS  Google Scholar 

  • Hall WT, McGavin MD (1968) Clinical and neuropathological changes in cattle eating the leaves of Macrozamia lucida or Bowenia serrulata (Family Zamiaceae). Pathol Vet 5(1):26–34

    CAS  PubMed  Google Scholar 

  • Hall JA, Walter GH (2013) Seed dispersal of the Australian cycad Macrozamia miquelii (Zamiaceae): are cycads megafauna-dispersed “grove forming” plants? Am J Bot 100(6):1127–1136

    Article  PubMed  Google Scholar 

  • Hall JA, Walter GH (2014) Relative seed and fruit toxicity of the Australian cycads Macrozamia miquelii and Cycas ophiolitica: Further evidence for a megafaunal seed dispersal syndrome in cycads, and its possible antiquity. J Chem Ecol 40(8):860–868

    Article  CAS  PubMed  Google Scholar 

  • Hamilton MB (1994) Ex situ conservation of wild plant species: time to reassess the genetic assumptions and implications of seed banks. Conserv Biol 8(1):39–49

    Article  Google Scholar 

  • Hedrick PW, Miller PS (1992) Conservation genetics: techniques and fundamentals. Ecol Appl 2(1):30–46

    Article  PubMed  Google Scholar 

  • Hefley TJ, Hooten MB, Drake JM, Russell RE, Walsh DP (2016) When can the cause of a population decline be determined? Ecol Lett 19(11):1353–1362

    Article  PubMed  Google Scholar 

  • Hill KD (1996) A taxonomic revision of the genus Cycas (Cycadaceae) in Australia. Telopea 7(1):1–64

    Article  Google Scholar 

  • Hoban S, Callicrate T, Clark J, Deans S, Dosmann M, Fant J, Gailing O, Havens K, Hipp AL, Kadav P, Kramer AT (2020) Taxonomic similarity does not predict necessary sample size for ex situ conservation: a comparison among five genera. Proc R Soc B 287(1926):20200102

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodel RG, Chen S, Payton AC, McDaniel SF, Soltis P, Soltis DE (2017) Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: comparing microsatellites and RAD-Seq and investigating loci filtering. Sci Rep 7(1):1–14

    Article  CAS  Google Scholar 

  • Hou L, Cui Y, Li X, Chen W, Zhang Z, Pang X, Li Y (2018) Genetic evaluation of natural populations of the endangered conifer Thuja koraiensis using microsatellite markers by restriction-associated DNA sequencing. Genes 9(4):218

    Article  PubMed Central  CAS  Google Scholar 

  • Hurka H (1994) Conservation genetics and the role of botanical gardens. In: Conservation genetics. Basel: Birkhäuser Basel, pp 371–380

  • IUCN (2021) The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org. Accessed 12 Nov 2021

  • James HE, Forster PI, Lamont RW, Shapcott A (2018) Conservation genetics and demographic analysis of the endangered cycad species Cycas megacarpa and the impacts of past habitat fragmentation. Aust J Bot 66(2):173–189

    Article  Google Scholar 

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070–3071.

    Article  CAS  Google Scholar 

  • Jones DL (2002) Cycads of the world, 2nd edn. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Kärkkäinen K, Savolainen O (1993) The degree of early inbreeding depression determines the selfing rate at the seed stage: model and results from Pinus sylvestris (Scots pine). Heredity 71(2):160–166

    Article  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4(8):782–788

    Article  Google Scholar 

  • Keppel G (2002) Low genetic variation in a Pacific cycad: conservation concerns for Cycas seemannii (Cycadaceae). Oryx 36(01):41–49

    Article  Google Scholar 

  • Keppel G, Lee SW, Hodgskiss PD (2002) Evidence for long isolation among populations of a Pacific cycad: genetic diversity and differentiation in Cycas seemannii A. Br. (Cycadaceae). J Hered 93(2):133–139

    Article  CAS  PubMed  Google Scholar 

  • Keppel G, Hodgskiss PD, Plunkett GM (2008) Cycads in the insular South-west Pacific: dispersal or vicariance? J Biogeogr 35(6):1004–1015

    Article  Google Scholar 

  • Kettle CJ, Hollingsworth PM, Jaffré T, Moran B, Ennos RA (2007) Identifying the early genetic consequences of habitat degradation in a highly threatened tropical conifer, Araucaria nemorosa Laubenfels. Mol Ecol 16(17):3581–3591

    Article  CAS  PubMed  Google Scholar 

  • Kono M, Tobe H (2007) Is Cycas revoluta (Cycadaceae) wind- or insect-pollinated? Am J Bot 5:847

    Article  Google Scholar 

  • Kramer AT, Havens K (2009) Plant conservation genetics in a changing world. Trends Plant Sci 14(11):599–607

    Article  CAS  PubMed  Google Scholar 

  • Lemopoulos A, Prokkola JM, Uusi-Heikkilä S, Vasemägi A, Huusko A, Hyvärinen P, Vainikka A (2019) Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—implications for brown trout conservation. Ecol Evol 9(4):2106–2120

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Xu Z, He T (2002) Ex situ genetic conservation of endangered Vatica guangxiensis (Dipterocarpaceae) in China. Biol Conserv 106(2):151–156

    Article  Google Scholar 

  • Liddle DR (2009) Management program for cycads in the northern territory of Australia. Northern Territory Department of Natural Resources, Environment, the Arts and Sport, Darwin

  • Long-Qian X et al (2004) ISSR variation in the endemic and endangered plant Cycas guizhouensis (Cycadaceae). Ann Bot 94(1):133–138

    Article  CAS  Google Scholar 

  • Mahy G, Jacquemart AL (1999) Early inbreeding depression and pollen competition in Calluna vulgaris (L.) Hull. Ann Bot 83(6):697–704

    Article  Google Scholar 

  • Mankga LT, Yessoufou K (2017) Factors driving the global decline of cycad diversity. AoB Plants 9(4):plx022

    Article  PubMed  PubMed Central  Google Scholar 

  • Meerow AW, Nakamura K (2007) Ten microsatellite loci from Zamia integrifolia (Zamiaceae). Mol Ecol Notes 7(5):824–826

    Article  CAS  Google Scholar 

  • Meerow AW, Francisco-Ortega J, Calonje M, Griffith MP, Ayala-Silva T, Stevenson DW, Nakamura K (2012) Zamia (Cycadales: Zamiaceae) on Puerto Rico: asymmetric genetic differentiation and the hypothesis of multiple introductions. Am J Bot 99(11):1828–1839

    Article  PubMed  Google Scholar 

  • Mondoni A, Probert RJ, Rossi G, Vegini E, Hay FR (2011) Seeds of alpine plants are short lived: implications for long-term conservation. Ann Bot 107(1):171–179

    Article  PubMed  Google Scholar 

  • Mussmann SM, Douglas MR, Chafin TK, Douglas ME (2019) BA3‐SNPs: contemporary migration reconfigured in BayesAss for next‐generation sequence data. Methods Ecol Evol 10(10):1808–1813

    Article  Google Scholar 

  • Nadarajan J, Benson EE, Xaba P, Harding K, Lindstrom A, Donaldson J, King E (2018) Comparative biology of cycad pollen, seed and tissue-A plant conservation perspective. Bot Rev 84(3):295–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namoff S, Husby CE, Francisco-Ortega J, Noblick LR, Lewis CE, Griffith MP (2010) How well does a botanical garden collection of a rare palm capture the genetic variation in a wild population? Biol Conserv 143(5):1110–1117

    Article  Google Scholar 

  • Nazareno AG, Bemmels JB, Dick CW, Lohmann LG (2017) Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour 17(6):1136–1147

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Burton VJ (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353(6296):288–291

    Article  CAS  PubMed  Google Scholar 

  • Norstog KJ, Fawcett PKS (1989) Insect-cycad symbiosis and its relation to the pollination of Zamia furfuracea (Zamiaceae) by Rhopalotria mollis (Curculionidae). Am J Bot 76(9):1380

    Article  Google Scholar 

  • Norstog K, Nicholls TJ (1997) The biology of the cycads. Comstock Pub. Associates, Ithaca

    Google Scholar 

  • Octavio-Aguilar P, González-Astorga J, Vovides AP (2009) Genetic diversity through life history of Dioon edule Lindley (Zamiaceae, Cycadales). Plant Biol 11(4):525–536

    Article  CAS  PubMed  Google Scholar 

  • Ornduff R (1992) Features of coning and foliar phenology, size classes, and insect associates of Cycas armstrongii (Cycadaceae) in the Northern Territory, Australia. Bull Torrey Bot Club 119(1):39

    Article  Google Scholar 

  • Paz-Vinas I, Loot G, Hermoso V, Veyssiere C, Poulet N, Grenouillet G, Blanchet S (2018) Systematic conservation planning for intraspecific genetic diversity. Proc R Soc B: Biol Sci 285(1877):20172746

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28(19):2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Ebert D, Scott LJ, Meagher PF, Offord CA (2003) Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Mol Ecol 12(9):2331–2343

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Farrera MA, Vovides AP, Octavio-Aguilar P, González-Astorga J, De La Cruz-rodríguez J, Hernández-Jonapá R, Villalobos-Méndez SM (2006) Demography of the cycad Ceratozamia mirandae (Zamiaceae) under disturbed and undisturbed conditions in a biosphere reserve of Mexico. Plant Ecol 187(1):97–108

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu WM, Liang N, Wu ZK, Zhao YG, Chu D (2019) Minimum sample sizes for invasion genomics: Empirical investigation in an invasive whitefly. Ecol Evol 10(1):38–49

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing, version 3.4.4. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67(5):901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Rodríguez P, Pérez de Paz PL, Sosa PA (2018) Species delimitation and conservation genetics of the Canarian endemic Bethencourtia (Asteraceae). Genetica 146(2):199–210

    Article  PubMed  CAS  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4):1219–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhsam M, Hollingsworth PM, Squirrell J, Ennos RA (2010) Significant differences in outcrossing rate, self-incompatibility, and inbreeding depression between two widely hybridizing species of Geum. Biol J Lin Soc 101(4):977–990

    Article  Google Scholar 

  • Schoen DJ, Brown AH (2001) The conservation of wild plant species in seed banks: attention to both taxonomic coverage and population biology will improve the role of seed banks as conservation tools. Bioscience 51(11):960–966

    Article  Google Scholar 

  • Shafer AB, Peart CR, Tusso S, Maayan I, Brelsford A, Wheat CW, Wolf JB (2017) Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol Evol 8(8):907–917

    Article  Google Scholar 

  • Shuguang J, Yang Z, Nian L, Zezheng G, Qiang W, Zhenhua X, Hal R (2006) Genetic variation in the endangered endemic species Cycas fairylakea (Cycadaceae) in China and implications for conservation. Biodivers Conserv 15(5):1681–1694

    Article  Google Scholar 

  • Sletvold N, Mousset M, Hagenblad J, Hansson B, Ågren J (2013) Strong inbreeding depression in two Scandinavian populations of the self-incompatible perennial herb Arabidopsis lyrata. Evolution 67(10):2876–2888

    PubMed  Google Scholar 

  • Suinyuy TN, Donaldson JS, Johnson SD (2009) Insect pollination in the African cycad Encephalartos friderici-guilielmii Lehm. S Afr J Bot 75(4):682–688

    Article  Google Scholar 

  • Sunde J, Yıldırım Y, Tibblin P, Forsman A (2020) Comparing the performance of microsatellites and RADseq in population genetic studies: analysis of data for pike (Esox lucius) and a synthesis of previous studies. Front Genet 11:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Terry I, Tang W, Marler TE (2012) Pollination systems of Island Cycads: predictions based on island biogeography. In: Proceedings of cycad 2008. The 8th international conference on cycad biology, Panama City, Panama, 13–15 January 2008 (102–132). New York Botanical Garden Press

  • Torgersen JS (2017) Crime, culture and collecting: the illicit cycad market in South Africa

  • Van Geert A, Van Rossum F, Triest L (2008) Genetic diversity in adult and seedling populations of Primula vulgaris in a fragmented agricultural landscape. Conserv Genet 9(4):845

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta‐analysis of their effects on species, communities and ecosystems. Ecol Lett 14(7):702–708

    Article  PubMed  Google Scholar 

  • Vogl C, Karhu A, Moran G, Savolainen O (2002) High resolution analysis of mating systems: inbreeding in natural populations of Pinus radiata. J Evol Biol 15(3):433–439

    Article  CAS  Google Scholar 

  • Volis S (2017) Conservation utility of botanic garden living collections: setting a strategy and appropriate methodology. Plant Divers 39(6):365–372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vovides AP, Ogata N, Sosa V, Peña-García E (1997) Pollination of endangered Cuban cycad Microcycas calocoma (Miq.) A. DC. Bot J Lin Soc 125(3):201–210

    Google Scholar 

  • Wang J (2019) A parsimony estimator of the number of populations from a STRUCTURE-like analysis. Mol Ecol Resour 19(4):970–981

    Article  CAS  PubMed  Google Scholar 

  • Watkinson AR, Powell JC (1997) The life history and population structure of Cycas armstrongii in monsoonal northern Australia. Oecologia 111(3):341–349

    Article  PubMed  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Williams CG, Savolainen O (1996) Inbreeding depression in conifers: implications for breeding strategy. For Sci 42(1):102–117

    Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163(3):1177–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Ruhsam M, Wen Y, Thomas PI, Worth JR, Lin X, Wang M, Li X, Chen L, Lamxay V, Le Canh N (2020) The last primary forests of the Tertiary relict Glyptostrobus pensilis contain the highest genetic diversity. For: Int J for Res 93(3):359–375

    Google Scholar 

  • Yoder AD, Poelstra JW, Tiley GP, Williams RC (2018) Neutral theory is the foundation of conservation genetics. Mol Biol Evol 35(6):1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, Shi E, Yang ZP, Geng QF, Qiu YX, Wang ZS (2018) Development and application of genomic resources in an endangered palaeoendemic tree, Parrotia subaequalis (Hamamelidaceae) from eastern China. Front Plant Sci 9:246

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Liu J, Feng X, Gong X (2017) The distribution, diversity, and conservation status of Cycas in China. Ecol Evol 7(9):3212–3224

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmerman SJ, Aldridge CL, Oyler-McCance SJ (2020) An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genom 21:1–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge funding received from the Australian Flora Foundation, the Australasian Systematic Botany Society, and The Nature Conservatory—The Thomas Foundation for an Australian Conservation Taxonomy Award. Support from the Biotechnology and Biological Sciences Research Council (BBSRC) UK and the EASTBIO Doctoral Training Partnership studentship at the University of Edinburgh is greatly acknowledged. We wish to thank Lichfield National Park and Charles Darwin University for allowing us to collect samples. Joe Perner of Cycad International for helping us locate population of C. calcicola around the Katherine region. The staff at the Royal Botanic Gardens and Domain Trust, in particular, Carolyn Connolly is thanked for her support in the molecular laboratory, Hannah McPherson for helping with the initial quality testing of data. We also thank the California Academy of Sciences; Joe Russack for his support and assistance in data assembly and Athena Lam and Boni Cruz for their support in the molecular laboratory. The assistance of various botanic gardens is acknowledged for providing C. calcicola leaf tissue samples, including Patrick Griffith and Michael Calonje of the Montgomery Botanical Center, Florida, USA and George Brown Darwin Botanic Garden Darwin, Northern Territory, Australia. We wish to thank, Alan Meerow of the United States Department of Agriculture for his support and advice regarding population genetics of cycads. The Royal Botanic Garden Edinburgh is supported by the Scottish Government’s Rural and Environment Science and Analytical Services Division.

Funding

1. Australian Flora Foundation—Research grant—Australia. 2. The Australasian Systematic Botany Society and The Nature Conservatory–The Thomas Foundation for an Australian Conservation Taxonomy Award—Australia. 3. Biotechnology and Biological Sciences Research Council (BBSRC) UK and the EASTBIO Doctoral Training Partnership—UK, Ref: 1429569.

Author information

Authors and Affiliations

Authors

Contributions

JARC—planning, conducted fieldwork, research, lab work, bioinformatics, main writer. MR—major contributor second writer, bioinformatics, statistics, manuscript structure. GJK—PhD supervisor, advice and manuscript feedback. MJH—PhD supervisor, manuscript editor, advice and input into research aims and outputs. RM—PhD supervisor, advice and manuscript feedback. NSN—PhD supervisor, obtained funding, conceived, planned and oversaw project, planned and conducted fieldwork, collected cultivated samples, manuscript editor, and provided feedback and overall guidance on manuscript.

Corresponding authors

Correspondence to James A. R. Clugston or Nathalie S. Nagalingum.

Ethics declarations

Conflict of interest

There are no competing interests within this manuscript by any listed authors.

Animal research and ethics approval

Not applicable.

Consent to participate (ethics)

Not applicable.

Consent for publication (ethics)

Not applicable.

Plant reproducibility

Not applicable.

Clinical trails registration

Not applicable.

Gels and blots/image manipulation

No gels or images were manipulated for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clugston, J.A.R., Ruhsam, M., Kenicer, G.J. et al. Conservation genomics of an Australian cycad Cycas calcicola, and the Absence of Key Genotypes in Botanic Gardens. Conserv Genet 23, 449–465 (2022). https://doi.org/10.1007/s10592-022-01428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-022-01428-8

Keywords

Navigation