Skip to main content
Log in

Modelling forest recolonization by an epiphytic lichen using a landscape genetic approach

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The process of recolonization after disturbance is crucial for the persistence and dynamics of patch-tracking metapopulations. We developed a model to compare the spatial distribution and spatial genetic structure of the epiphytic lichen Lobaria pulmonaria within the perimeter of two reconstructed 19th century disturbances with a nearby reference area without stand-level disturbance. Population genetic data suggested that after stand-replacing disturbance, each plot was colonized by one or a few genotypes only, which subsequently spread clonally within a local neighborhood. The model (cellular automaton) aimed at testing the validity of this interpretation and at assessing the relative importance of local dispersal of clonal propagules vs. long-distance dispersal of clonal and/or sexual diaspores. A reasonable model fit was reached for the empirical data on host tree distribution, lichen distribution, and tree- and plot-level genotype diversity of the lichen in the reference area. Although model calibration suggested a predominance of local dispersal of clonal propagules, a substantial contribution of immigration of non-local genotypes by long-distance dispersal was needed to reach the observed levels of genotype diversity. The model could not fully explain the high degree of clonality after stand-replacing disturbance, suggesting that the dispersal process itself may not be stationary but depend on the ecological conditions related to disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.E. Antoine B. McCune (2004) ArticleTitleContrasting fundamental and realized ecological niches with epiphytic lichen transplants in an old-growth Pseudotsuga forest Bryologist 107 163–172 Occurrence Handle10.1639/0007-2745(2004)107[0163:CFAREN]2.0.CO;2

    Article  Google Scholar 

  • R. Bailey P. James (1979) ArticleTitleBirds and the dispersal of lichen propagules Lichenologist 11 105–106

    Google Scholar 

  • R.H. Bailey (1976) Ecological aspects of dispersal and establishment in lichens D.H. Brown D.L. Hawksworth R.H. Bailey (Eds) Lichenology: Progress and Problems Academic Press London 215–247

    Google Scholar 

  • P. Beerli J. Felsenstein (1999) ArticleTitleMaximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach Genetics 152 763–773 Occurrence Handle10353916 Occurrence Handle1:STN:280:DyaK1M3ot1Gitg%3D%3D

    PubMed  CAS  Google Scholar 

  • C.P. Brooks (2003) ArticleTitleA scalar analysis of landscape connectivity Oikos 102 433–439 Occurrence Handle10.1034/j.1600-0579.2003.11511.x

    Article  Google Scholar 

  • M.L. Cain B.G. Milligan A.E. Strand (2000) ArticleTitleLong-distance seed dispersal in plant populations Am. J. Bot. 87 1217–1227 Occurrence Handle10991892 Occurrence Handle10.2307/2656714

    Article  PubMed  Google Scholar 

  • J.S. Clark (1998) ArticleTitleWhy trees migrate so fast: confronting theory with dispersal biology and the paleorecord Am. Nat. 152 204–224 Occurrence Handle10.1086/286162

    Article  Google Scholar 

  • J. Clobert E. Danchin A.A. Dhondt J.D. Nichols (Eds) (2001) Dispersal Oxford University Press Oxford

    Google Scholar 

  • W.C. Denison (2003) ArticleTitleApothecia and ascospores of Lobaria oregana and Lobaria pulmonaria investigated Mycologia 95 513–518

    Google Scholar 

  • M.J. Fortin B. Boots F. Csillag T.K. Remmel (2003) ArticleTitleOn the role of spatial stochastic models in understanding landscape indices in ecology Oikos 102 203–212 Occurrence Handle10.1034/j.1600-0706.2003.12447.x

    Article  Google Scholar 

  • R.H. Gardner B.T. Milne M.G. Turner R.V. O’Neill (1987) ArticleTitleNeutral models for the analysis of broad-scale landscape patterns Landscape Ecol. 1 19–28 Occurrence Handle10.1007/BF02275262

    Article  Google Scholar 

  • J.G. Gonzalez-Astorga A. Cruz-Angon A. Flores-Palacios A.P. Vovides (2004) ArticleTitleDiversity and genetic structure of the Mexican endemic epiphyte Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys (Bromeliaceae) Ann. Bot. 94 545–551 Occurrence Handle15319228 Occurrence Handle1:CAS:528:DC%2BD2cXps1alsLw%3D Occurrence Handle10.1093/aob/mch171

    Article  PubMed  CAS  Google Scholar 

  • B.J. Goodwin (2003) ArticleTitleIs landscape connectivity a dependent or independent variable? Landscape Ecol. 18 687–699 Occurrence Handle10.1023/B:LAND.0000004184.03500.a8

    Article  Google Scholar 

  • S. Harrison E. Bruna (1999) ArticleTitleHabitat fragmentation and large-scale conservation: what do we know for sure? Ecography 22 225–232 Occurrence Handle10.1111/j.1600-0587.1999.tb00496.x

    Article  Google Scholar 

  • Holderegger R., Gugerli F. and Kamm U. in press. Adaptive versus neutral genetic diversity: implications for landscape genetics. Landscape Ecol. 21: 797–807.

  • R. Ihaka R. Gentleman (1996) ArticleTitleR: a language for data analysis and graphics J. Comput. Grap. Stat. 5 299–314 Occurrence Handle10.2307/1390807

    Article  Google Scholar 

  • Jordan W.P. 1970. The internal cephalodia of the genus Lobaria. Bryologist 73: 669–681

    Google Scholar 

  • Kalwij J.M. 2005. Selecting and testing indicators of forest history and sylvopastoral landscape dynamics. Ph.D. Thesis, University of Bern, Bern.

  • J.M. Kalwij H.H. Wagner C. Scheidegger (2005) ArticleTitleEffects of stand-level disturbance events on the spatial distribution of a lichen indicator of forest conservation value Ecol. Appl. 15 2015–2024

    Google Scholar 

  • J.E. Keymer P.A. Marquet J.X. Velasco-Hernandez S.A. Levin (2000) ArticleTitleExtinction thresholds and metapopulation persistence in dynamic landscapes Am. Nat. 156 478–494 Occurrence Handle10.1086/303407

    Article  Google Scholar 

  • M. Kot M.A. Lewis P. vandenDriessche (1996) ArticleTitleDispersal data and the spread of invading organisms Ecology 77 2027–2042 Occurrence Handle10.2307/2265698

    Article  Google Scholar 

  • K. Lertzman J. Fall (1998) From forest stands to landscapes: spatial scales and the roles of disturbances D.L. Peterson V.T. Parker (Eds) Ecological Scale: Theory and Applications Columbia University Press New York 339–367

    Google Scholar 

  • Merriam G. 1984. Connectivity: a fundamental ecological characteristic of landscape pattern. First International Seminar on Methodology in Landscape Ecological Research and Planning. Roskilde Universitetsforlag GeuRuc, Roskilde.

  • N.J. Ouborg Y. Piquot J.M. Van Groenendael (1999) ArticleTitlePopulation genetics, molecular markers and the study of dispersal in plants J. Ecol. 87 551–568 Occurrence Handle10.1046/j.1365-2745.1999.00389.x

    Article  Google Scholar 

  • W.A. Ozinga J.H.J. Schaminee R.M. Bekker S. Bonn P. Poschlod O. Tackenberg J. Bakker J.M. Groenendael Particlevan (2005) ArticleTitlePredictability of plant species composition from environmental conditions is constrained by dispersal limitation Oikos 108 555–561 Occurrence Handle10.1111/j.0030-1299.2005.13632.x

    Article  Google Scholar 

  • M. Parker R. Mac Nally (2002) ArticleTitleHabitat loss and the habitat fragmentation threshold: an experimental evaluation of impacts on richness and total abundances using grassland invertebrates Biol. Conserv. 105 217–229 Occurrence Handle10.1016/S0006-3207(01)00184-7

    Article  Google Scholar 

  • S.L. Peck (2004) ArticleTitleSimulation as experiment: a philosophical reassessment for biological modeling Trends Ecol. Evol. 19 530–534 Occurrence Handle16701318 Occurrence Handle10.1016/j.tree.2004.07.019

    Article  PubMed  Google Scholar 

  • C. Ray (2001) ArticleTitleMaintaining genetic diversity despite local extinctions: effects of population scale Biol. Conserv. 100 3–14 Occurrence Handle10.1016/S0006-3207(00)00202-0

    Article  Google Scholar 

  • C.M. Richards S. Church D.E. McCauley (1999) ArticleTitleThe influence of population size and isolation on gene flow by pollen in Silene alba Evolution 53 63–73 Occurrence Handle10.2307/2640920

    Article  Google Scholar 

  • J. Rikkinen I. Oksanen K. Lohtander (2002) ArticleTitleLichen guilds share related cyanobacterial symbionts Science 297 357–357 Occurrence Handle12130774 Occurrence Handle1:CAS:528:DC%2BD38Xls1Cisr8%3D Occurrence Handle10.1126/science.1072961

    Article  PubMed  CAS  Google Scholar 

  • F. Rose (1976) Lichenological indicators of age and environmental continuity in woodlands H.D. Brown D.L. Hawksworth R.H. Bailey (Eds) Lichenology: Progress and Problems Academic Press London 279–307

    Google Scholar 

  • F. Rose (1992) Temperate forest management: its effects on bryophyte and lichen floras and habitats J.W. Bates A. Farmer (Eds) Bryophytes and Lichens in a Changing Environment Clarendon Press Oxford 211–233

    Google Scholar 

  • C. Scheidegger (1995) ArticleTitleEarly development of transplanted isidioid soredia of Lobaria pulmonaria in an endangered population Lichenologist 27 361–374 Occurrence Handle10.1006/lich.1995.0034

    Article  Google Scholar 

  • C. Scheidegger B. Frey J.C. Walser (1998) Reintroduction and augmentation of populations of the endangered Lobaria pulmonaria: methods and concepts S. Kondratyuk B.J. Coppins (Eds) Lobarion Lichens as Indicators of the Primeval Forests of the Eastern Carpathians Phytosociocentre Kiev 33–52

    Google Scholar 

  • C. Scheidegger T. Goward (2002) Monitoring lichens for conservation: Red Lists and conservation action plans P.L. Nimis C. Scheidegger P.A. Wolseley (Eds) Monitoring with lichens – monitoring lichens Kluwer New York 163–181

    Google Scholar 

  • J.P. Schütz (2002) ArticleTitleSilvicultural tools to develop irregular and diverse forest structures Forestry 75 329–337 Occurrence Handle10.1093/forestry/75.4.329

    Article  Google Scholar 

  • T. Snäll J. Pennanen L. Kivisto I. Hanski (2005) ArticleTitleModelling epiphyte metapopulation dynamics in a dynamic forest landscape Oikos 109 209–222 Occurrence Handle10.1111/j.0030-1299.2005.13616.x

    Article  Google Scholar 

  • V.L. Sork P.E. Smouse (2006) ArticleTitleGenetic analysis of landscape connectivity in tree populations Landscape Ecol. 21 821–836

    Google Scholar 

  • B. Sundberg K. Palmqvist P.A. Esseen K.E. Renhorn (1997) ArticleTitleGrowth and vitality of epiphytic lichens. 2. Modelling of carbon gain using field and laboratory data Oecologia 109 10–18 Occurrence Handle10.1007/s004420050052

    Article  Google Scholar 

  • O. Tackenberg (2003) ArticleTitleModeling long-distance dispersal of plant diaspores by wind Ecol. Monogr. 73 173–189

    Google Scholar 

  • P.D. Taylor L. Fahrig K. Henein G. Merriam (1993) ArticleTitleConnectivity is a vital element of landscape structure Oikos 68 571–573

    Google Scholar 

  • L. Tischendorf L. Fahrig (2000) ArticleTitleHow should we measure landscape connectivity? Landscape Ecol. 15 633–641 Occurrence Handle10.1023/A:1008177324187

    Article  Google Scholar 

  • D.W. Trapnell J.L. Hamrick (2005) ArticleTitleMating patterns and gene flow in the neotropical epiphytic orchidLaelia rubescens Mol. Ecol. 14 75–84 Occurrence Handle15643952 Occurrence Handle1:STN:280:DC%2BD2M%2FhvVyltA%3D%3D Occurrence Handle10.1111/j.1365-294X.2004.02383.x

    Article  PubMed  CAS  Google Scholar 

  • F. Villa A. Voinov C. Fitz R. Costanza (2004) Calibration of large spatial models: a multistagemultiobjective optimization technique R. Costanza A. Voinov (Eds) Landscape Simulation Modeling: A Spatially ExplicitDynamic Approach Springer New York 77–116

    Google Scholar 

  • Vittoz P. 1998. Flore et végétation du Parc jurassien vaudois: typologieécologie et dynamiqu des milieux. Ph.D. Thesis, Université de LausanneLausanne.

  • H.H. Wagner M.J. Fortin (2005) ArticleTitleSpatial analysis of landscapes: concepts and statistics Ecology 86 1975–1987

    Google Scholar 

  • H.H. Wagner R. Holderegger S. Werth F. Gugerli S.E. Hoebee C. Scheidegger (2005) ArticleTitleVariogram analysis of the spatial genetic structure of continuous populations using multilocus microsatellite data Genetics 169 1739–1752 Occurrence Handle15654102 Occurrence Handle1:CAS:528:DC%2BD2MXktFGjtLY%3D Occurrence Handle10.1534/genetics.104.036038

    Article  PubMed  CAS  Google Scholar 

  • J.C. Walser (2004) ArticleTitleMolecular evidence for limited dispersal of vegetative propagules in the epiphytic lichen Lobaria pulmonaria Am. J. Bot. 91 1273–1276

    Google Scholar 

  • J.C. Walser F. Gugerli R. Holderegger D. Kuonen C. Scheidegger (2004) ArticleTitleRecombination and clonal propagation in different populations of the lichen Lobaria pulmonaria Heredity 93 322–329 Occurrence Handle15241450 Occurrence Handle1:CAS:528:DC%2BD2cXnvVKmsrY%3D Occurrence Handle10.1038/sj.hdy.6800505

    Article  PubMed  CAS  Google Scholar 

  • J.C. Walser C. Sperisen M. Soliva C. Scheidegger (2003) ArticleTitleFungus-specific microsatellite primers of lichens: application for the assessment of genetic variation on different spatial scales in Lobaria pulmonaria Fungal Genet. Biol. 40 72–82 Occurrence Handle12948515 Occurrence Handle1:CAS:528:DC%2BD3sXmslegur8%3D Occurrence Handle10.1016/S1087-1845(03)00080-X

    Article  PubMed  CAS  Google Scholar 

  • J.C. Walser S. Zoller U. Buchler C. Scheidegger (2001) ArticleTitleSpecies-specific detection of Lobaria pulmonaria (lichenized ascomycete) diaspores in litter samples trapped in snow cover Mol. Ecol. 10 2129–2138 Occurrence Handle11555256 Occurrence Handle1:STN:280:DC%2BD3MrgslWjuw%3D%3D Occurrence Handle10.1046/j.1365-294X.2001.01353.x

    Article  PubMed  CAS  Google Scholar 

  • S. Werth (2005) Dispersal and persistence of an epiphytic lichen in a dynamic pasture-woodland landscape University of Bern Bern

    Google Scholar 

  • Werth S., Wagner H.H., Holderegger R., Kalwij J.M. and Scheidegger C. in press. Effect of disturbances on the genetic diversity of an old-forest associated lichen. Mol. Ecol.

  • J.A. Wiens N.C. Stenseth B. Horne ParticleVan R.A. Ims (1993) ArticleTitleEcological mechanisms and landscape ecology Oikos 66 369–380

    Google Scholar 

  • K.A. With (1997) ArticleTitleThe application of neutral landscape models in conservation biology Conserv. Biol. 11 1069–1080 Occurrence Handle10.1046/j.1523-1739.1997.96210.x

    Article  Google Scholar 

  • K.A. With S.J. Cadaret C. Davis (1999) ArticleTitleMovement responses to patch structure in experimental fractal landscapes Ecology 80 1340–1353 Occurrence Handle10.2307/177079

    Article  Google Scholar 

  • I. Yoshimura (1971) ArticleTitleThe genus Lobaria of Eastern Asia J. Hattori Bot. Lab. 34 231–364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helene H. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, H.H., Werth, S., Kalwij, J.M. et al. Modelling forest recolonization by an epiphytic lichen using a landscape genetic approach. Landscape Ecol 21, 849–865 (2006). https://doi.org/10.1007/s10980-005-5567-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-005-5567-7

Keywords

Navigation