Skip to main content

Advertisement

Log in

Perspectives of genomics for genetic conservation of livestock

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Genomics provides new opportunities for conservation genetics. Conservation genetics in livestock is based on estimating diversity by pedigree relatedness and managing diversity by choosing those animals that maximize genetic diversity. Animals can be chosen as parents for the next generation, as donors of material to a gene bank, or as breeds for targeting conservation efforts. Genomics provides opportunities to estimate diversity for specific parts of the genome, such as neutral and adaptive diversity and genetic diversity underlying specific traits. This enables us to choose candidates for conservation based on specific genetic diversity (e.g. diversity of traits or adaptive diversity) or to monitor the loss of diversity without conservation. In wild animals direct genetic management, by choosing candidates for conservation as in livestock, is generally not practiced. With dense marker maps opportunities exist for monitoring relatedness and genetic diversity in wild populations, thus enabling a more active management of diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allendorf FW, Hard JJ (2009) Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc Natl Acad Sci USA 106:9987–9994

    Article  CAS  PubMed  Google Scholar 

  • CBD (1992) Convention on Biological Diversity

  • Chakraborty R, Moreau L, Dekkers JCM (2002) A method to optimize selection on multiple identified quantitative trait loci. Genet Sel Evol 34:145–170

    Article  CAS  PubMed  Google Scholar 

  • De Roos APW, Hayes BJ, Spelman RJ, Goddard ME (2008) Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics 179:1503–1512

    Article  PubMed  Google Scholar 

  • Eding H, Meuwissen THE (2001) Marker-based estimates of between and within population kinships for the conservation of genetic diversity. J Anim Breed Genet 118:141–159

    Article  CAS  Google Scholar 

  • Eding H, Crooijmans R, Groenen MAM, Meuwissen THE (2002) Assessing the contribution of breeds to genetic diversity in conservation schemes. Genet Sel Evol 34:613–633

    Article  PubMed  Google Scholar 

  • Fabuel E, Barragan C, Silio L, Rodriguez MC, Toro MA (2004) Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity 93:104–113

    Article  CAS  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics. Longman Group, Essex, UK

    Google Scholar 

  • FAO (2007a) Global plan of action for animal genetic resources and the Interlaken declaration. FAO, Rome, Italy

    Google Scholar 

  • FAO (2007b) The state of the world’s animal genetic resources for food and agriculture. FAO, Rome, Italy

    Google Scholar 

  • Fernandez J, Roughsedge T, Woolliams JA, Villanueva B (2006) Optimization of the sampling strategy for establishing a gene bank: storing PrP alleles following a scrapie eradication plan as a case study. Anim Sci 82:813–821

    Article  CAS  Google Scholar 

  • Gibbs RA, Taylor JF, Van Tassell CP et al (2009) Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds. Science 324:528–532

    Article  CAS  PubMed  Google Scholar 

  • Gilligan DM, Briscoe DA, Frankham R (2005) Comparative losses of quantitative and molecular genetic variation in finite populations of Drosophila melanogaster. Genet Res 85:47–55

    Article  CAS  PubMed  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  CAS  PubMed  Google Scholar 

  • Green RD (2009) ASAS Centennial Paper: future needs in animal breeding and genetics. J Anim Sci 87:793–800

    Article  CAS  PubMed  Google Scholar 

  • Hospital F (2001) Size of donor chromosome segments surrounding introgressions and the reduction of linkage drag in marker-assisted backcross programs. Genetics 158:1363–1379

    CAS  PubMed  Google Scholar 

  • Kammenga JE, Herman MA, Ouborg NJ, Johnson L, Breitling R (2007) Microarray challenges in ecology. Trends Ecol Evol 22:273–279

    Article  PubMed  Google Scholar 

  • Karlsson EK, Baranowska I, Wade CM et al (2007) Efficient mapping of Mendelian traits in dogs through genome-wide association. Nat Genet 39:1321–1328

    Article  CAS  PubMed  Google Scholar 

  • Kristensen TN, Pedersen KS, Vermeulen CJ, Loeschcke V (2010) Research on inbreeding in the ‘omic’ era. Trends Ecol Evol (in press)

  • Lenstra JA (2006) Marker-assisted conservation of European cattle breeds: an evaluation. Anim Genet 37:475–481

    Article  CAS  Google Scholar 

  • MacEachern S, Hayes B, McEwan J, Goddard M (2009) An examination of positive selection and changing effective population size in Angus and Holstein cattle populations (Bos taurus) using a high density SNP genotyping platform and the contribution of ancient polymorphism to genomic diversity in Domestic cattle. BMC Genomics 10:181

    Article  PubMed  CAS  Google Scholar 

  • Megens HJ, Crooijmans R, Cristobal MS, Hui X, Li N, Groenen MAM (2008) Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet Sel Evol 40:103–128

    PubMed  Google Scholar 

  • Meuwissen THE (1997) Maximizing the response of selection with a predefined rate of inbreeding. J Anim Sci 75:934–940

    CAS  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  Google Scholar 

  • Meuwissen THE, Karlsen A, Lien S, Olsaker I, Goddard ME (2002) Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373–379

    CAS  PubMed  Google Scholar 

  • Mucha S, Windig JJ (2009) Effects of incomplete pedigree on genetic management of the Dutch Landrace goat. J Anim Breed Genet 126:250–256

    Article  CAS  PubMed  Google Scholar 

  • Oliehoek PA, Windig J, Arendonk JAM, Bijma P (2006) Estimating relatedness between individuals in general populations with a focus on their use in conservation programs. Genetics 173:483–496

    Article  CAS  PubMed  Google Scholar 

  • Pedersen LD, Sørencen AC, Berg P (2009) The number of genes underlying a trait under selection affects the rates of expected and true inbreeding more than their distribution over the genome recovery. In: Book of abstracts of the 60th annual meeting of the European association for animal production. Wageningen Academic, Wageningen, p 319

  • Peter C, Bruford M, Perez T, Dalamitra S, Hewitt G, Erhardt G (2007) Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim Genet 38:37–44

    Article  CAS  PubMed  Google Scholar 

  • Prayaga KC (2007) Genetic options to replace dehorning in beef cattle—a review. Aust J Agric Res 58:1–8

    Article  Google Scholar 

  • Rauw WM, Kanis E, Noordhuizen-Stassen EN, Grommers FJ (1998) Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest Prod Sci 56:15–33

    Article  Google Scholar 

  • Salih H, Adelson DL (2009) QTL global meta-analysis: are trait determining genes clustered? BMC Genomics 10:184

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Gratten J, Beraldi D, Stapley J, Hale M, Pemberton JM (2009) Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 136:97–107

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Valentini A, Rezaei HR, Naderi S, Pompanon F, Negrini R, Ajmone-Marsan P (2008) Are cattle, sheep, and goats endangered species? Mol Ecol 17:275–284

    Article  CAS  PubMed  Google Scholar 

  • Toro MA (2006) Assessing genetic diversity between breeds for conservation. J Anim Breed Genet 123:289

    Article  PubMed  Google Scholar 

  • Windig JJ, Kaal L (2008) An effective rotational mating scheme for inbreeding reduction in captive populations illustrated by the rare sheep breed Kempisch Heideschaap. Animal 2:1733–1741

    Article  Google Scholar 

  • Windig JJ, Meuleman H, Kaal L (2007) Selection for scrapie resistance and simultaneous restriction of inbreeding in the rare sheep breed “Mergellander”. Prev Vet Med 78:161–171

    Article  PubMed  Google Scholar 

  • Wong GKS, Liu B, Wang J et al (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sipke Joost Hiemstra provided comments on an earlier version. This study was financially supported by the Dutch Ministry of Agriculture, Nature and Food (Programme KB-04-002-021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack J. Windig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windig, J.J., Engelsma, K.A. Perspectives of genomics for genetic conservation of livestock. Conserv Genet 11, 635–641 (2010). https://doi.org/10.1007/s10592-009-0007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-0007-x

Keywords

Navigation