Skip to main content

Advertisement

Log in

The connectivity of lymphogenous and hematogenous tumor cell dissemination: biological insights and clinical implications

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Although tumor cells are found in the blood early after tumorigenesis, dissemination through the lymphatic system and in particular the formation of lymph node metastases has long been considered to be a driving force behind the formation of secondary tumors in distant vital organs. Contemporary experimental observations and clinical trial results suggest that this may not be the case. In this review we survey the evidence for both points of view, and examine the hypothesis that the prognostic relevance of lymph node metastases may lie in their ability to indicate that primary tumors are producing soluble factors that have the potential to promote metastasis at these distant sites, for example by releasing tumor cells from dormancy. Furthermore, the interconnectivity between the lymphatic and blood circulatory systems underscores the relevance of the analysis of the properties of circulating and disseminated tumor cells for prognostic evaluation, patient stratification and understanding the biology of metastasis. We therefore give an overview of the current state of the art in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sleeman JP, Nazarenko I, Thiele W (2011) Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 128(11):2511–2526. doi:10.1002/ijc.26027

    Article  PubMed  CAS  Google Scholar 

  2. Cady B (2007) Regional lymph node metastases; a singular manifestation of the process of clinical metastases in cancer: contemporary animal research and clinical reports suggest unifying concepts. Ann Surg Oncol 14(6):1790–1800

    Article  PubMed  Google Scholar 

  3. Fisher B, Fisher ER (1966) Transmigration of lymph nodes by tumor cells. Science 152(727):1397–1398

    Article  PubMed  CAS  Google Scholar 

  4. Fisher B, Fisher ER (1966) The interrelationship of hematogenous and lymphatic tumor cell dissemination. Surg Gynecol Obstet 122(4):791–798

    PubMed  CAS  Google Scholar 

  5. Fisher B, Fisher ER (1970) Significance of the interrelationship of the lymph and blood vascular systems in tumor cell dissemination. Prog Clin Cancer 4:84–96

    PubMed  CAS  Google Scholar 

  6. Fisher B, Fisher ER (1967) The organ distribution of disseminated 51 Cr-labeled tumor cells. Cancer Res 27(2):412–420

    PubMed  CAS  Google Scholar 

  7. Sleeman J, Schmid A, Thiele W (2009) Tumor lymphatics. Semin Cancer Biol 19(5):285

    Article  PubMed  CAS  Google Scholar 

  8. Cochran AJ, Huang RR, Lee J, Itakura E, Leong SP, Essner R (2006) Tumour-induced immune modulation of sentinel lymph nodes. Nat Rev Immunol 6(9):659–670. doi:10.1038/nri1919

    Article  PubMed  CAS  Google Scholar 

  9. Madden RE, Gyure L (1968) Translymphnodal passage of tumor cells. Oncology 22(4):281–289

    Article  PubMed  CAS  Google Scholar 

  10. Kurokawa Y (1970) Experiments on lymph node metastasis by intralymphatic inoculation of rat ascites tumor cells, with special reference to lodgement, passage, and growth of tumor cells in lymph nodes. Gann 61(5):461–471

    PubMed  CAS  Google Scholar 

  11. Hewitt HB, Blake E (1975) Quantitative studies of translymphnodal passage of tumour cells naturally disseminated from a non immunogenic murine squamous carcinoma. Br J Cancer 31(1):25–35

    Article  PubMed  CAS  Google Scholar 

  12. Carr J, Carr I, Dreher B, Betts K (1980) Lymphatic metastasis: invasion of lymphatic vessels and efflux of tumour cells in the afferent popliteal lymph as seen in the Walker rat carcinoma. J Pathol 132(4):287–305. doi:10.1002/path.1711320402

    Article  PubMed  CAS  Google Scholar 

  13. Grundmann E, Vollmer E (1985) Early local reaction and lymph node permeation of rat carcinoma HH9-cl 14 cells. An immunohistological approach. Pathol Res Pract 179(3):304–309

    Article  PubMed  CAS  Google Scholar 

  14. Leijte JA, van der Ploeg IM, Valdes Olmos RA, Nieweg OE, Horenblas S (2009) Visualization of tumor blockage and rerouting of lymphatic drainage in penile cancer patients by use of SPECT/CT. J Nucl Med 50(3):364–367. doi:10.2967/jnumed.108.059733

    Article  PubMed  Google Scholar 

  15. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326. doi:10.1016/j.cell.2009.11.025

    Article  PubMed  Google Scholar 

  16. Crile G Jr, Isbister W, Deodhar SD (1971) Demonstration that large metastases in lymph nodes disseminate cancer cells to blood and lungs. Cancer 28(3):657

    Article  PubMed  Google Scholar 

  17. Ward PM, Weiss L (1989) Metachronous seeding of lymph node metastases in rats bearing the MT-100-TC mammary carcinoma: the effect of elective lymph node dissection. Breast Cancer Res Treat 14(3):315–320

    Article  PubMed  CAS  Google Scholar 

  18. Sleeman JP (2000) The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157:55–81

    Article  PubMed  CAS  Google Scholar 

  19. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST (2001) Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93(21):1638–1643

    Article  PubMed  CAS  Google Scholar 

  20. Shields JD, Emmett MS, Dunn DB, Joory KD, Sage LM, Rigby H, Mortimer PS, Orlando A, Levick JR, Bates DO (2007) Chemokine-mediated migration of melanoma cells towards lymphatics—a mechanism contributing to metastasis. Oncogene 26(21):2997–3005

    Article  PubMed  CAS  Google Scholar 

  21. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11(6):526–538

    Article  PubMed  CAS  Google Scholar 

  22. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet I:571–573

    Article  Google Scholar 

  23. Koch F (1939) Zur Frage der Metastasenbildung bei Impftumoren. Z Krebsforsch 48:495–507

    Article  Google Scholar 

  24. Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7(2):143–188

    Article  PubMed  CAS  Google Scholar 

  25. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  CAS  Google Scholar 

  26. Arya M, Patel HR, McGurk C, Tatoud R, Klocker H, Masters J, Williamson M (2004) The importance of the CXCL12-CXCR4 chemokine ligand–receptor interaction in prostate cancer metastasis. J Exp Ther Oncol 4(4):291–303

    PubMed  CAS  Google Scholar 

  27. Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, Beider K, Avniel S, Kasem S, Galun E, Peled A (2004) Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. Faseb J 18(11):1240–1242. doi:10.1096/fj.03-0935fje

    PubMed  CAS  Google Scholar 

  28. Gervasoni JE Jr, Taneja C, Chung MA, Cady B (2000) Biologic and clinical significance of lymphadenectomy. Surg Clin N Am 80(6):1631–1673

    Article  PubMed  Google Scholar 

  29. Veronesi U, Marubini E, Mariani L, Valagussa P, Zucali R (1999) The dissection of internal mammary nodes does not improve the survival of breast cancer patients. 30-year results of a randomised trial. Eur J Cancer 35(9):1320–1325

    Article  PubMed  CAS  Google Scholar 

  30. Terrone C, Cracco C, Porpiglia F, Bollito E, Scoffone C, Poggio M, Berruti A, Ragni F, Cossu M, Scarpa RM, Rossetti SR (2006) Reassessing the current TNM lymph node staging for renal cell carcinoma. Eur Urol 49(2):324–331. doi:10.1016/j.eururo.2005.11.014

    Article  PubMed  Google Scholar 

  31. Blazer DG 3rd, Sabel MS, Sondak VK (2003) Is there a role for sentinel lymph node biopsy in the management of sarcoma? Surg Oncol 12(3):201–206

    Article  PubMed  Google Scholar 

  32. Klein CA, Holzel D (2006) Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle 5(16):1788–1798

    Article  PubMed  CAS  Google Scholar 

  33. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312

    Article  PubMed  CAS  Google Scholar 

  34. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122

    Article  PubMed  CAS  Google Scholar 

  35. Sleeman JP, Christofori G, Fodde R, Collard JG, Berx G, Decraene C, Ruegg C (2012) Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol. doi:10.1016/j.semcancer.2012.02.007

    Google Scholar 

  36. Uhr JW, Pantel K (2011) Controversies in clinical cancer dormancy. Proc Natl Acad Sci USA 108(30):12396–12400

    Article  PubMed  CAS  Google Scholar 

  37. Kauffman HM, McBride MA, Delmonico FL (2000) First report of the united network for organ sharing transplant tumor registry: donors with a history of cancer. Transplantation 70(12):1747–1751

    Article  PubMed  CAS  Google Scholar 

  38. Buell JF, Trofe J, Hanaway MJ, Lo A, Rosengard B, Rilo H, Alloway R, Beebe T, First MR, Woodle ES (2001) Transmission of donor cancer into cardiothoracic transplant recipients. Surgery 130 (4):660–666 (discussion 666–668). doi:10.1067/msy.2001.117102

    Google Scholar 

  39. Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, Morris VL, Groom AC, Chambers AF (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62(7):2162–2168

    PubMed  CAS  Google Scholar 

  40. MacKie RM, Reid R, Junor B (2003) Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med 348(6):567–568. doi:10.1056/NEJM200302063480620

    Article  PubMed  Google Scholar 

  41. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LW, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10(24):8152–8162

    Article  PubMed  Google Scholar 

  42. Becker R, Lenter MC, Vollkommer T, Boos AM, Pfaff D, Augustin HG, Christian S (2008) Tumor stroma marker endosialin (Tem1) is a binding partner of metastasis-related protein Mac-2 BP/90 K. Faseb J 22(8):3059–3067

    Article  PubMed  CAS  Google Scholar 

  43. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  PubMed  CAS  Google Scholar 

  44. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375

    Article  PubMed  CAS  Google Scholar 

  45. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, Shibuya M, Akira S, Aburatani H, Maru Y (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10(11):1349–1355

    Article  PubMed  CAS  Google Scholar 

  46. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109(3):1010–1017

    Article  PubMed  CAS  Google Scholar 

  47. Jakob C, Aust DE, Liebscher B, Baretton GB, Datta K, Muders MH (2011) Lymphangiogenesis in regional lymph nodes is an independent prognostic marker in rectal cancer patients after neoadjuvant treatment. PLoS ONE 6(11):e27402. doi:10.1371/journal.pone.0027402

    Article  PubMed  CAS  Google Scholar 

  48. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM (2009) Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell 4(1):62–72

    Article  PubMed  CAS  Google Scholar 

  49. Cristofanilli M, Braun S (2010) Circulating tumor cells revisited. JAMA 303(11):1092–1093

    Article  PubMed  Google Scholar 

  50. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4(6):448–456

    Article  PubMed  CAS  Google Scholar 

  51. Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8:329–340

    Article  PubMed  CAS  Google Scholar 

  52. Pantel K, Schlimok G, Kutter D, Schaller G, Genz T, Wiebecke B, Backmann R, Funke I, Riethmuller G (1991) Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Res 51(17):4712–4715

    PubMed  CAS  Google Scholar 

  53. Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, Riethmuller G, Schlimok G (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342(8):525–533

    Article  PubMed  CAS  Google Scholar 

  54. Kollermann J, Weikert S, Schostak M, Kempkensteffen C, Kleinschmidt K, Rau T, Pantel K (2008) Prognostic significance of disseminated tumor cells in the bone marrow of prostate cancer patients treated with neoadjuvant hormone treatment. J Clin Oncol 26(30):4928–4933

    Article  PubMed  Google Scholar 

  55. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G, Pierga JY, Marth C, Oruzio D, Wiedswang G, Solomayer EF, Kundt G, Strobl B, Fehm T, Wong GY, Bliss J, Vincent-Salomon A, Pantel K (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353(8):793–802

    Article  PubMed  CAS  Google Scholar 

  56. Alix-Panabieres C, Schwarzenbach H, Pantel K (2012) Circulating tumor cells and circulating tumor DNA. Annu Rev Med 63:199–215

    Article  PubMed  CAS  Google Scholar 

  57. Xenidis N, Ignatiadis M, Apostolaki S, Perraki M, Kalbakis K, Agelaki S, Stathopoulos EN, Chlouverakis G, Lianidou E, Kakolyris S, Georgoulias V, Mavroudis D (2009) Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol 27(13):2177–2184

    Article  PubMed  CAS  Google Scholar 

  58. Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Janicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin Cancer Res 13(3):920–928

    Article  PubMed  CAS  Google Scholar 

  59. Bednarz N, Eltze E, Semjonow A, Rink M, Andreas A, Mulder L, Hannemann J, Fisch M, Pantel K, Weier HU, Bielawski KP, Brandt B (2010) BRCA1 loss preexisting in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood. Clin Cancer Res 16(13):3340–3348

    Article  PubMed  CAS  Google Scholar 

  60. Joosse SA, Hannemann J, Spotter J, Bauche A, Andreas A, Muller V, Pantel K (2012) Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Clin Cancer Res 18(4):993–1003

    Article  PubMed  CAS  Google Scholar 

  61. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  PubMed  CAS  Google Scholar 

  62. Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LW, Meropol NJ (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26(19):3213–3221

    Article  PubMed  Google Scholar 

  63. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ, Raghavan D (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14(19):6302–6309

    Article  PubMed  Google Scholar 

  64. Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A, Ward TH, Ferraldeschi R, Hughes A, Clack G, Ranson M, Dive C, Blackhall FH (2011) Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol 29(12):1556–1563

    Article  PubMed  Google Scholar 

  65. Pantel K, Deneve E, Nocca D, Coffy A, Vendrell JP, Maudelonde T, Riethdorf S, Alix-Panabieres C (2012) Circulating epithelial cells in patients with benign colon diseases. Clin Chem. doi: 10.1373/clinchem.2011.175570

  66. Riethdorf S, Muller V, Zhang L, Rau T, Loibl S, Komor M, Roller M, Huober J, Fehm T, Schrader I, Hilfrich J, Holms F, Tesch H, Eidtmann H, Untch M, von Minckwitz G, Pantel K (2010) Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin Cancer Res 16(9):2634–2645

    Article  PubMed  CAS  Google Scholar 

  67. Smirnov DA, Zweitzig DR, Foulk BW, Miller MC, Doyle GV, Pienta KJ, Meropol NJ, Weiner LM, Cohen SJ, Moreno JG, Connelly MC, Terstappen LW, O’Hara SM (2005) Global gene expression profiling of circulating tumor cells. Cancer Res 65(12):4993–4997

    Article  PubMed  CAS  Google Scholar 

  68. Watson MA, Ylagan LR, Trinkaus KM, Gillanders WE, Naughton MJ, Weilbaecher KN, Fleming TP, Aft RL (2007) Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin Cancer Res 13(17):5001–5009

    Article  PubMed  CAS  Google Scholar 

  69. Sieuwerts AM, Kraan J, de Bolt Vries J, van der Spoel P, Mostert B, Martens JW, Gratama JW, Sleijfer S, Foekens JA (2009) Molecular characterization of circulating tumor cells in large quantities of contaminating leukocytes by a multiplex real-time PCR. Breast Cancer Res Treat 118(3):455–468

    Article  PubMed  CAS  Google Scholar 

  70. Markou A, Strati A, Malamos N, Georgoulias V, Lianidou ES (2011) Molecular characterization of circulating tumor cells in breast cancer by a liquid bead array hybridization assay. Clin Chem 57(3):421–430

    Article  PubMed  CAS  Google Scholar 

  71. Alix-Panabieres C, Vendrell JP, Pelle O, Rebillard X, Riethdorf S, Muller V, Fabbro M, Pantel K (2007) Detection and characterization of putative metastatic precursor cells in cancer patients. Clin Chem 53(3):537–539

    Article  PubMed  CAS  Google Scholar 

  72. Alix-Panabieres C, Vendrell JP, Slijper M, Pelle O, Barbotte E, Mercier G, Jacot W, Fabbro M, Pantel K (2009) Full length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast Cancer Res 11(3):R39

    Article  PubMed  Google Scholar 

  73. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  74. Bartkowiak K, Effenberger KE, Harder S, Andreas A, Buck F, Peter-Katalinic J, Pantel K, Brandt BH (2010) Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients. J Proteome Res 9(6):3158–3168

    Article  PubMed  CAS  Google Scholar 

  75. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, Pienta MJ, Song J, Wang J, Loberg RD, Krebsbach PH, Pienta KJ, Taichman RS (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121(4):1298–1312

    Article  PubMed  CAS  Google Scholar 

  76. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH, Cote RJ (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12(19):5615–5621

    Article  PubMed  CAS  Google Scholar 

  77. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142

    Article  PubMed  CAS  Google Scholar 

  78. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial–mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11(4):R46

    Article  PubMed  Google Scholar 

  79. Baehner FL, Li R, Jenkins T, Hwang J, Kashani-Sabet M, Allen RE, Leong SPL (2012) The impact of primary melanoma thickness and microscopic tumor burden in sentinel lymph nodes on melanoma patient survival. Ann Surg Oncol 19:1034–1042

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

JPS gratefully acknowledges funding from the European Union under the auspices of the FP7 collaborative project TuMIC, contract no. HEALTH-F2-2008-201662.

Conflicts of interest

The author declares that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Sleeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sleeman, J.P., Cady, B. & Pantel, K. The connectivity of lymphogenous and hematogenous tumor cell dissemination: biological insights and clinical implications. Clin Exp Metastasis 29, 737–746 (2012). https://doi.org/10.1007/s10585-012-9489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9489-x

Keywords

Navigation