Skip to main content

The Lymph Node as a Bridgehead in the Metastatic Dissemination of Tumors

  • Conference paper
Lymphatic Metastasis and Sentinel Lymphonodectomy

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 157))

Abstract

The metastatic spread of tumors is not a random process. Distinct patterns of metastasis can be discerned which vary from tumor type to tumor type. A common pattern, particularly for carcinomas, is that regional lymph nodes are often the first organs to develop metastases. This pattern of metastasis is central to the utility of the sentinellymphonodectomy surgical technique. However, not all tumors and tumor types metastasize first to the regional lymph nodes. The mechanisms which determine whether regional lymph nodes or other sites first develop metastases remain poorly understood. In this article I review the anatomical, cellular and molecular factors which play a role in metastatic dissemination and determine patterns of metastasis. I then explore the importance of tumor heterogeneity and the selection of metastatically competent tumor cells during systemic dissemination, and suggest that some secondary sites are more readily colonised by metastasizing cells than others. Metastases at these sites act as bridgeheads, constituting a reservoir of tumor cells which, because they have already successfully metastasized, possess many of the properties required for metastasis to further sites. These tumor cells are therefore more likely than cells in the primary tumor to acquire all of the properties required for metastasis to less favourable secondary sites. To illustrate the bridgehead concept, I argue that features of the design and function of the lymphatic system make it highly amenable to the entry of metastasizing tumor cells and the formation of lymph node metastases, and suggest that lymph node metastases form a bridgehead for further metastatic spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, S. (1991). Growth factors and cancer. Science 254: 1146–1153

    PubMed  CAS  Google Scholar 

  • Achen, M., Jeltsch, M., Kukk, E., Makinen, T., Vitali, A., Wilks, A., Alitalo, K. and Stacker, S. (1998). Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3. Proc. Natl.. Acad. Sci USA 95: 548–553

    PubMed  CAS  Google Scholar 

  • Amundson, S., Myers, T. and Pomace, A. (1998). Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17: 3287–3299

    PubMed  Google Scholar 

  • Aukland, K. and Reed, R. (1993). Interstitial-Lymphatic mechanisms in the control of extracellular fluid volume. Physiological Reviews 73: 1–75

    PubMed  CAS  Google Scholar 

  • Bates, R., Lincz, L. and Burns, G. (1995). Involvement of integrins in cell survival. Cancer Metastasis Rev. 14: 191–203

    PubMed  CAS  Google Scholar 

  • Beahrs, O. and Myers, M. (1983). Purposes and priciples of staging. Manual for staging of cancer p3–5. J. B. Lippincott Co., Philadelphia

    Google Scholar 

  • Birchmeier, W. and Behrens, J. (1984). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1198: 11–26

    Google Scholar 

  • Brodt, P. (1991). Adhesion mechanisms in lymphatic metastasis. Cancer Metastasis Rev. 10: 23–32

    PubMed  CAS  Google Scholar 

  • Butler, T. and Gullino, P. (1975). Quantitation of cell shedding into efferent blood of mammary carcinoma. Cancer Research 35: 512–516

    PubMed  CAS  Google Scholar 

  • Cabanas, R. (1977). An approach for the treatment of penile carcinoma. Cancer 39: 456–466

    PubMed  CAS  Google Scholar 

  • Carr, I. (1983). Lymphatic metastasis. Cancer Metastasis Rev. 2: 307–317

    PubMed  CAS  Google Scholar 

  • Chambers, A., Macdonald, I., Schmidt, E., Koop, S., Morris, V., Khoka, R. and Groom, A. (1995). Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer and Metastasis Reviews 14: 279–301

    PubMed  CAS  Google Scholar 

  • Chan, B., Matsuura, N., Takada, Y., Zetter, B. and Hemler, M. (1991). In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science 251: 1600–1602

    PubMed  CAS  Google Scholar 

  • Denko, N., Giaccia, A., Stringer, J. and Stambrook, P. (1994). The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc. Natl.. Acad. Sci. USA 91: 5124–5128

    PubMed  CAS  Google Scholar 

  • Deutsch, A., Lubach, D., Nissen, S. and Neukam, D. (1992). Ultrastructural studies on the invasion of melanomas in initial lymphatics of human skin. J. Invest Dermatol. 98: 64-67

    Google Scholar 

  • de Waal, R., van Altena, M., Erhard, H., Weidle, U., Nooijen, P. and Ruiter D. (1997). Lack of lymphangiogenesis in human primary cutaneous melanoma. Am. J. Pathol. 150: 1951–1957

    PubMed  Google Scholar 

  • Duffy, M. (1992). The role of proteolytic enzymes in cancer invasion and metastasis. Cin. Exp. Metastasis 10: 1455–155

    Google Scholar 

  • Dvorak, H. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659

    PubMed  CAS  Google Scholar 

  • Ennis, R., Katz, A., de Vries, G., Heitjan, D., O’Toole, K., Rubin, M., Buttyan R., Benson, M. and Schiff, P. (1997). Detection of circulating prostate carcinoma cells via an enhanced reverse transcriptase-polymerase chain reaction assay in patients with early stage prostate carcinoma. Independence from other pretreatment characteristics. Cancer 79: 2402–2408

    PubMed  CAS  Google Scholar 

  • Ewing, J. (1928). Metastasis. In: Neoplastic disease, a treatise on tumors. 3rd edition, Saunders, Philadelphia

    Google Scholar 

  • Fallowfield, M. and Cook, M. (1990). Lymphatics in primary cutaneous melanoma. Am J. Surg. Pathol. 14: 370–374

    PubMed  CAS  Google Scholar 

  • Fearon, E. and Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    PubMed  CAS  Google Scholar 

  • Fidler, I. (1970). Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I_5_iodo_2’-deoxyuridine. J. Natl.. Cancer Inst. 45: 773–782

    PubMed  CAS  Google Scholar 

  • Fidler, I. (1978). Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer research 38: 2651–2660

    PubMed  CAS  Google Scholar 

  • Fisher, B and Fisher, E. (1966). The interrelationship of hematogenous and lymphatic tumor cell dissemination. Surg. Gynecol. Obstet. 122: 791–798

    PubMed  CAS  Google Scholar 

  • Fisher, B and Fisher, E. (1970). Significance of the interrelationship of the lymph and blood vascular systems in tumor cell dissemination. Prog. Clin. Cancer 4: 84–96

    PubMed  CAS  Google Scholar 

  • Pitz, L., Morris, J., Towler, P., Long, A., Burgess, P., Greco, R., Wang, J., Gassaway, R., Nickbarg, E., Kovacic, S., Ciarletta, A., Giannotti, J., Finnerty, H., Zollner, R., Beier, D., Leak, L., Turner, K. and Wood, C. (1997). Characterisation of murine Flt4 ligand/VEGF-C. Oncogene 15: 613–618

    Google Scholar 

  • Foulds, L. (1975). Neoplastic development. Academic Press, New York

    Google Scholar 

  • Goldman, E. (1906). Relation of cancer cells to blood vessels and ducts. Lancet 1: 23

    Google Scholar 

  • Gomez, D., Alonso, D., Yoshiji, H. and Thorgeirsson, U. (1997). Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell Biol, 74: 111–122

    PubMed  CAS  Google Scholar 

  • Grundmann, E. and Vollmer, E. (1985). Early local reaction and lymph node permeation of rat carcinoma HH9-cl 14 cells. An immunohistological approach. Pathol Res Pract 179: 304–309

    PubMed  CAS  Google Scholar 

  • Gualberto, A., Aldape, K., Kozakiewicz, K. and Tlsty, T. (1998). An oncogenic form of p53 confers a dominant gain-of-function phenotype that disrupts spindle checkpoint control. Proc. Natl.. Acad. Sci. USA 95: 5166–5171

    PubMed  CAS  Google Scholar 

  • Gulec, S., Moffat, E, Carroll, R., Serafini, A., Skakianakis, G., Aile, L., Boggs, J., Escobedo, D., Pruett, C; Gupta, A., Livingstone, A. and Krag, D. (1998). Sentinel lymph node localization in early breast cancer. J. Nuclear Med. 39: 1388–1393

    CAS  Google Scholar 

  • Guyton, A. and Hall, A. (1996). Textbook of Medical Physiology (9th ed.). W. B. Saunders Company, Philadelphia, USA

    Google Scholar 

  • Hanahan, D. and Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86: 353–364

    PubMed  CAS  Google Scholar 

  • Harveit, E (1990). Attenuated cells of the breast stroma: the missing lymphatic system of the breast. Histopathology 16: 533–543

    Google Scholar 

  • Heiss, M., Allgayer, H., Gruetzner, K., Funke, I., Babic, R., Jauch, K.-W. and Schildberg, E (1995). Individual development and uPA-receptor expression of disseminated tumor cells in bone marrow: a reference to early systemic disease in solid cancer. Nature Med. 1: 1035–1039

    PubMed  CAS  Google Scholar 

  • Hesketh, J., Vasconcelos, M. and Bermano, G. (1998). Regulatory signals in messenger RNA: determinants of nutrient-gene interaction and metabolic compartmentation. Br. J. Nutr. 80: 307–321

    PubMed  CAS  Google Scholar 

  • Hill, R., Chambers, A., Ling, V. and Harri S.J. (1984). Dynamic heterogeneity: rapid generation of metastatic varinats of mouse B16 melanoma cells. Science 224: 998–1001

    PubMed  CAS  Google Scholar 

  • Hockenberry, D., Nunez, G., Milliman, C., Screiber, R. and Korsmeyer, S. (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336

    Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C. (1991). p53 mutations in human cancers. Science 253: 49–53

    PubMed  CAS  Google Scholar 

  • Honn, K. and Tang, D. (1992). Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer and Metastasis Reviews 11: 353–375

    PubMed  CAS  Google Scholar 

  • Imhof, B., Piali, L., Gisler, R. and Dunon, D. (1996). Involvement of a6 and av integrins in metastasis. Current Topics in Microbiology and Immunology 213/1: 195–203

    PubMed  CAS  Google Scholar 

  • Israeli, R., Miller, W., Su, S., Powell, C., Fair, W., Samadi, D., Huryk, R., DeBlasio, A., Edwards, E., Wise, G. et al. (1994). Sensitive nested reverse transcription polymerase chain reaction detection of circulating prostatic tumor cells: comparison of prostate-specific membrane antigen and prostate-specific antigen-based assays. Cancer Research 54: 6306–6310

    PubMed  CAS  Google Scholar 

  • Jain, R. (1989). Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl.. Cancer Inst. 81: 52–58

    Google Scholar 

  • Jeltsch, M., Kaipainen, A., Joukov, V., Meng, X., Lakso, M., Rauvala, H., Swartz, M., Fukumura, D., Kain, R. and Alitalo, K. (1997). Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276: 1423–1425

    PubMed  CAS  Google Scholar 

  • Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Kalkkinen, N. and Alitalo, K. (1996). A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15: 290–298

    PubMed  CAS  Google Scholar 

  • Jussila, L., Valtola, R., Partanen, T., Salven, P., Heikkila, P., Matikainen, M.-T., Renkonen, R., Kaipainen, A., Detmar, M., Tschachler, E., Alitalo, R. and Alitalo, K. (1998). Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth growth factor receptor-3. Cancer Res. 58: 1599–1604

    PubMed  CAS  Google Scholar 

  • Kaipainen, A., Korhonen, J., Mustonen, T., van Hinsberg, V., Fang, G.-H., Dumont, D., Breitman, M. and Alitalo, K. (1995). Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 92: 3566–3570

    PubMed  CAS  Google Scholar 

  • Karin, M. (1992). Signal transduction from cell surface to nucleus in development and disease. FASEB J. 6: 2581–2590

    PubMed  CAS  Google Scholar 

  • Kebers, F., Lewalle, J.-M., Desreux, J., Munaut, C; Devy, L., Foidart, J.-M., Noel, A. (1998). Induction of endothelial cell apoptosis by solid tumor cells. Exp. Cell Res 240: 197–205

    PubMed  CAS  Google Scholar 

  • Kerbel, R., Waghorne, C. and Korczak, B. (1988). Clonal dominance of primary tumours by metastatic cells: genetic analysis and biological implications. Cancer Surv. 7: 597–629

    PubMed  CAS  Google Scholar 

  • Kim, U. and Furth, J. (1960). Relation of mammotropes to mammary tumors. IV. Development of highly hormone-dependent mammary tumors. Proc. Soc. Exptl. Biol. Med. 105: 490–492

    CAS  Google Scholar 

  • Kim, J., Yu, W., Kovalski, K. and Ossowski, L. (1998). Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94: 353–362

    PubMed  CAS  Google Scholar 

  • Knudson, A. (1993). Antioncogenes and cancer. Proc. Natl. Acad. Sci. USA 90: 10914–10921

    PubMed  CAS  Google Scholar 

  • Koch, F. E. (1939). Zur Frage der Metastasenbildung bei Impftumoren. Z. Krebsforsch. 48: 495–507

    Google Scholar 

  • Kulakowski, A., Madej, G. and Pienkowski, T. (1984). Distribution of lymph node metastases in the malignant melanoma of the trunk. Oncology 41: 242–244

    PubMed  CAS  Google Scholar 

  • Kukk, E., Lymboussaki, A., Taira, S., Kaipainen, A., Jeltsch, M., Joukov, V. and Alitalo, K. (1996). VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122: 3829–3837

    PubMed  CAS  Google Scholar 

  • Leak, L. and Burke, J. (1968). Ultrastructual studies on the lymphatic anchoring filaments. J. Cell Biol. 36: 129–149

    Google Scholar 

  • Lee, E., Lee, W.-H., Kaetzel, C., Parry, G. and Bissel, M. (1985). Interaction of mouse mammary epithelial cells with collagen substrates: regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci USA 82: 1419–1423

    PubMed  CAS  Google Scholar 

  • Lee, J., Gray, A., Yuan, J., Luoh, S.-M., Avraham, H. and Wood, W. (1996). Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc. Natl. Acad. Sci. USA 93: 1988–1992

    PubMed  CAS  Google Scholar 

  • Li, M., Aggeler, J., Farson, D., Hatier, C., Hussell, J. and Bissell, M. (1987). Influence of reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84: 136–140

    PubMed  CAS  Google Scholar 

  • Liotta, L., Mandler, R., Murano, G., Katz, D., Gordon, R., Chiang, P. and Schiffman, E. (1986). Tumor-cell autocrine motility factor. Proc. Natl. Acad. Sci. USA 83: 3302–3306

    PubMed  CAS  Google Scholar 

  • Lubach, D., Berens von Rautenfeld, D. and Kaiser, H. (1992). The possible role of the initial lymph vessels of the skin during metastasis of malignant tumors. In vivo, 6: 443–450

    PubMed  CAS  Google Scholar 

  • Ludwig, J. and Titus J. (1967). Experimental tumor cell emboli in lymph nodes. Arch. Pathol. 84: 304–311

    PubMed  CAS  Google Scholar 

  • McCarthy, S., Kuzu, I., Gatter, K. and Bicknell, R. (1991). Heterogeneity of the endothelial cell and its role in organ preference of tumour metastasis. Trends Pharmacol Sci. 12: 462–467

    PubMed  CAS  Google Scholar 

  • McCormack, S., Weaver, Z., Deming, S., Natarajan, G., Torri, J., Johnson, M., Liyanage, M., Ried, T. and Dickson, R. (1998). Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene 16: 2755–2766

    PubMed  CAS  Google Scholar 

  • Melchior, S., Corey, E., Ellis, W., Ross, A., Layton, T., Oswin, M., Lange, P. and Vessella, R. (1997). Early tumor cell dissemination in patients with clinically localized carcinoma of the prostate. Clin. Cancer Res. 3: 249–256

    PubMed  CAS  Google Scholar 

  • Mori, M., Mimori, K., Ueo, H., Karimine, N., Barnard, G., Sugimachi, K. and Akiyoshi, T. (1996). Molecular detection of circulating solid carcinoma cells in the peripheral blood: the concept of early systemic disease. Int. J. Cancer 68: 739–743

    PubMed  CAS  Google Scholar 

  • Naik, P., Karrim, J. and Hanahan, D. (1996). The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev. 10: 2105–2116

    PubMed  CAS  Google Scholar 

  • Nicolson, G. (1982). Cancer Metastasis: organ colonisation and the cell-surface properties of malignant cells. Biochim. Biophy. Acta 695: 113–176

    CAS  Google Scholar 

  • Nicolson, G. (1987). Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Res. 47: 1473–1487

    PubMed  CAS  Google Scholar 

  • Nicolson, G. (1988). Organ specificity of tumor metatasis: role of preferential adhesion, invasion and growth of malignant cells at specific sites. Cancer and Metastasis Reviews 7: 143–188

    PubMed  CAS  Google Scholar 

  • Nicolson, G. (1991). Gene expression, cellular diversification and tumor progression to the metastatic phenotype. Bioessays 13: 337–342

    PubMed  CAS  Google Scholar 

  • Nicolson, G. and Poste, G. (1982). Tumor cell diversity and host response in cancer metastasis. Curr. Prob. Cancer 7: 1–83

    CAS  Google Scholar 

  • Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997). VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev, Biol. 188: 96–109

    CAS  Google Scholar 

  • Padget, S. (1889). Distribution of secondary growths in cancer of the breast. Lancet 1: 571–573

    Google Scholar 

  • Pauli, B., Augustin-Voss, H., El-Sabban, M., Johnson, R. and Hammer, D. (1990). Organ-preference of metastasis: the role of endothelial cell adhesion molecules. Cancer and Metastasis Reviews 9: 175–189

    PubMed  CAS  Google Scholar 

  • Pawelec, G., Zeuthen, J. and Kiessling, R. (1997). Escape from host-antitumor immunity. Crit. Rev. Oncog. 8: 111–141

    PubMed  CAS  Google Scholar 

  • Poste, G., Tzeng, J., Doll, J., Greig, R., Rieman, D. and Zeidman, I. (1982). Evolution of tumor cell heterogeneity during progressive growth of individual lung metastases. Proc. Natl. Acad. Sci. USA 79: 6574–6578

    PubMed  CAS  Google Scholar 

  • Powell, W. and Matrisian, L. (1996). Complex roles of matrix metalloproteinases in tumor progression. Curr. Top. Microbiol. Immunol. 213/1: 1–21

    PubMed  CAS  Google Scholar 

  • Price, J., Aukerman, S. and Fidler, I. (1986). Evidence that the process of murine melanoma metastasis is sequential and selective and contains stochastic elements. Cancer Res. 46: 5172–5178

    PubMed  CAS  Google Scholar 

  • Rajotte, D., Arap, W., Hagedorn, M., Koivunen, E., Pasqualini, R. and Ruoslahti, E. (1999). Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest. 102: 430–437

    Google Scholar 

  • Ratcliffe, P., O’Rourke, J., Maxwell, P. and Pugh, C. (1998). Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalial gene expression. J. Exp. Biol. 201: 1153–1162

    PubMed  CAS  Google Scholar 

  • Raz, A. and Ben-Ze’ev, A. (1983) Modulation of the metastatic capability in BI6 melanoma by cell shape. Science 221: 1307–1310

    PubMed  CAS  Google Scholar 

  • Reed, J. (1998). Bcl-2 family proteins. Oncogene 17: 3225–3236

    PubMed  Google Scholar 

  • Rosenberg, S. (1993). Principles and applications of biologic therapy. In Cancer, Principles and Practice of Oncology, Fourth Edition, Eds Devita, Hellman and Rosenberg, pp 293–324. J. B. Lippincott Co., Philadelphia

    Google Scholar 

  • Ryan, T. (1987). Structure and function of lymphatics. J. Invest. Dermatol. 93: 18S–23 S

    Google Scholar 

  • Salsbury, A. (1975). The significance of the circulating cancer cell. Cancer Treat. Rev. 2: 55–72

    PubMed  CAS  Google Scholar 

  • Sato, H., Khato, J., Sato, T. and Suzuki, M. (1977). Deformability and filtrability of tumor cells through “nucleopore” filter, with reference to viability and metastatic spread. Gann monogr. Cancer Res. 20: 3–13

    Google Scholar 

  • Sato, H. and Suzuki, M. (1976). In Fundamental aspects of metastasis (Weiss, L., ed.), pp 311–317. North Holland Publishing Co., Amsterdam

    Google Scholar 

  • Searle, P. and Young, L. (1996). Immunotherapy II: antigens, receptors and costimulation. Cancer Metastasis Rev. 15: 329–349

    PubMed  CAS  Google Scholar 

  • Shibata, M., Maroulakou, I., Jorcyk, C., Gold, L., Ward, J. and Green, J. (1996). p53-independent apoptosis during mammary tumor progression in C3(1)/SV40 large T transgenic mice: suppression of apoptosis during transition from preneoplasia to carcinoma. Cancer Res. 56: 2998–3003

    PubMed  CAS  Google Scholar 

  • Shimonaka, M. and Yamaguchi, Y. (1994). Purification and biological characterisation of epitaxin, a fibroblast-der ived motility factor for epithelial cells. J. BioL. Chem. 269: 14284–14289

    PubMed  CAS  Google Scholar 

  • Sugarbaker, E. (1979). Cancer metastasis: a product of tumor-host interactions. In Current Problems in Cancer, Vol. III, R. Hickey, Ed. YearBook Medical Publishers, Chicago

    Google Scholar 

  • Sugarbaker, E. (I98I). Patterns of metastasis in human malignancies. Cancer Biol. Rev. 2: 235–278

    Google Scholar 

  • Symonds, H., Krall, L., Remington, L., Saenz-Robles, M., Lowe, S., Jacks, T. and Van Dyke, T. (1994). p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78: 703–711

    PubMed  CAS  Google Scholar 

  • Takaoka, A., Adachi, M., Okuda, H., Sato, S., Yawata, A., Hinoda, Y., Takayama, S., Reed, J. and Imai, K. (1997). Anti cell death activity promotes pulmonary metastasis of melanoma cells. Oncogene 14: 2971–2977

    PubMed  CAS  Google Scholar 

  • Taplin, M., Bubley, G., Shuster, T., Frantz, M., Spooner, A., Ogata, G., Keer, H. and Balk, S. (1995). Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332: 1393–1398

    PubMed  CAS  Google Scholar 

  • Tarin, D., Price, J., Kettlewell, M., Souter, R., Vass, A. and Crossley, B. (1984). Mechanisms of human metastasis studied in patients with peritovenous shunts. Cancer Res. 44: 3584–3592

    PubMed  CAS  Google Scholar 

  • Tlsty, D. (1998). Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Current Opinion in Cell Biology 10: 647–653

    PubMed  CAS  Google Scholar 

  • Tsubura, E., Yamashita, T. and Sone, S. (1983). Inhibition of the arrest of hematogenously disseminated tumor cells. Cancer Metastasis Rev. 2: 223–237

    PubMed  CAS  Google Scholar 

  • Updyke, T. and Nicolson, G. (1986). Malignant melanoma cell lines selected in vitro for increased homotypic adhesion properties have increased experimental metastasis potential. Clin. Exp. Metastasis 4: 273–284

    PubMed  CAS  Google Scholar 

  • Viney, J. (1995). Transgenic and gene knockout mice in cancer research. Cancer Metastasis Rev. 14: 77–90

    PubMed  CAS  Google Scholar 

  • Walker, P., Saas, P. and Dietrich, P. (1997). Role of fas ligand (CD95L) in immune escape: the tumor cell strikes back. J. Immunol. 158: 4521–4524

    PubMed  CAS  Google Scholar 

  • Weinberg, R. (1995). The molecular basis of oncogenes and tumor suppressor genes. Ann. N. Y. Acad. Sci. 758: 331–338

    PubMed  CAS  Google Scholar 

  • Weinstein, I. B. (1988). The origins of human cancer: molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment-tenty seventh G. H. A. Clowes memorial award lecture. Cancer Res. 48: 4135–4143

    PubMed  CAS  Google Scholar 

  • Weinstock, M., Clark, J. and Calabresi, P. (1993). Melanoma. In Medical Oncology, 2nd edition (Eds. Calabresi and Schein), p 545–563. McGraw-Hill, Inc., New York, USA

    Google Scholar 

  • Weiss, J. M., Sleeman, J. P., Renkl, A. C., Termeer, C., Dittmar, H., Taxis, S., Howells, N., Hofmann, M., Schopf, E., Ponta, H., Herrlich P. and Simon, J. C. (1997). An essential role for CD44 variant isoforms in epidermal Langerhans cell and blood dendritic cell function. J. Cell Biol. 137: 1137–1147

    PubMed  CAS  Google Scholar 

  • Weiss, L. (1983). Random and nonrandom processes in metastasis and metastatic efficiency. Invasion Metastasis 3: 193–208

    PubMed  CAS  Google Scholar 

  • Weiss, L. and Ward, P (1983). Cell detachment and metastasis. Cancer Metastasis Rev. 2: 111–127

    PubMed  CAS  Google Scholar 

  • Weitz, J., Kienle, P., Lacroix, J., Willeke, E, Benner, A., Lehnert, T., Herfarth, C. and von Knebel Doeberitz, M. (1998). Dissemination of tumor cells in patients undergoing surgery for colorectal cancer. Clin. Cancer Res. 4: 343–348

    PubMed  CAS  Google Scholar 

  • Willis, R. A. (1975). Metastasis via the lymphatics. In: The spread of tumours in the human body, third edition. Butterworths, London

    Google Scholar 

  • Yin, X., Grove, L., Dataa, N., Long, M. and Prochownik, E. (1999). C-myc overexpression and p53 loss cooperate to promote genomic instability. Oncogene 18: 1177–1184

    PubMed  CAS  Google Scholar 

  • Yoshizawa, M., Shingaki, S., Nakajima, T. and Saku, T. (1994). Histopathological study of lymphatic invasion in squamous cell carcinoma (0-1 N) with high potential of lymph node metastasis. Clin. Exp. Metastasis 12: 347–356

    PubMed  CAS  Google Scholar 

  • Young, R., Perez, C. and Hoskins, W. (1993). Cancer of the ovary. In: Cancer, Principles and Practice of Oncology, Fourth Edition, Eds Devita, Hellman and Rosenberg, pp 1226–1263. J. B. Lippincott Co., Philadelphia

    Google Scholar 

  • Zeidman, I. and Buss, J. (1952). Transpulmonary passage of tumor cell emboli. Cancer Res. 12: 731–733

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sleeman, J.P. (2000). The Lymph Node as a Bridgehead in the Metastatic Dissemination of Tumors. In: Schlag, P.M., Veronesi, U. (eds) Lymphatic Metastasis and Sentinel Lymphonodectomy. Recent Results in Cancer Research, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57151-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57151-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63070-5

  • Online ISBN: 978-3-642-57151-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics