Skip to main content

Advertisement

Log in

Transient silencing of galectin-3 expression promotes both in vitro and in vivo drug-induced apoptosis of human pancreatic carcinoma cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Pancreatic cancer demonstrates a strong resistance to anticancer drugs, presumably due to its resistance to drug induced apoptosis. Although gemcitabine (GEM) might be partially effective for treating advanced pancreatic cancer, its efficacy is still less than satisfactory. Galectin-3 (gal-3), a member of the β-galactoside-binding protein family, is a multifunctional protein with roles in tumor cell adhesion, proliferation, differentiation, angiogenesis, metastasis, and apoptosis. We have utilized gal-3 small interfering RNA (siRNA) to probe whether gal-3 regulates anticancer drug-induced apoptosis in pancreatic cancer cells. We found that Gal-3 siRNA augmented GEM- and cisplatin-induced apoptosis in pancreatic cancer cell lines in vitro. Mitochondrial depolarization induction was increased in gal-3-silenced cells after GEM treatment, resulting in activation of caspase-9, but not caspase-8. Akt phosphorylation was significantly downregulated in gal-3- silenced cells in association with apoptosis. Moreover, intratumoral administration of gal-3 siRNA increased the GEM sensitivity of tumor xenografts produced by subcutaneous inoculation of pancreatic cancer cells into nude mice. These results suggest that gal-3 might provide a novel therapeutic target in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

gal-3:

Galectin-3

GEM:

Gemcitabine

siRNA:

Small interfering RNA

TNF-α:

Tumor necrosis factor-α

PARP:

Poly ADP-ribose polymerase

ERK:

Extracellular-signal-regulated kinases

JNK:

C-Jun N-terminal kinases

PI3K:

Phosphoinositide 3 kinase

PTEN:

Phosphatase and tension homolog deleted on chromosome 10

FITC:

Fluorescein isothiocyanate

PBS:

Phosphate-buffered saline

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  1. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  2. Ueno H, Kosuge T, Matsuyama Y et al (2009) A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. Br J Cancer 101:908–915

    Article  PubMed  CAS  Google Scholar 

  3. Regine WF, Winter KA, Abrams RA et al (2008) Fluorouracil vs. gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. Jama 299:1019–1026

    Article  PubMed  CAS  Google Scholar 

  4. Oettle H, Post S, Neuhaus P et al (2007) Adjuvant chemotherapy with gemcitabine vs. observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. Jama 297:267–277

    Article  PubMed  CAS  Google Scholar 

  5. Burris HA III, Moore MJ, Andersen J et al (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413

    PubMed  CAS  Google Scholar 

  6. Lawrence TS, Davis MA, Hough A et al (2001) The role of apoptosis in 2′, 2′-difluoro-2′-deoxycytidine (gemcitabine)-mediated radiosensitization. Clin Cancer Res 7:314–319

    PubMed  CAS  Google Scholar 

  7. Barondes SH, Castronovo V, Cooper DN et al (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell 76:597–598

    Article  PubMed  CAS  Google Scholar 

  8. Barondes SH, Cooper DN, Gitt MA et al (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269:20807–20810

    PubMed  CAS  Google Scholar 

  9. Gray CA, Adelson DL, Bazer FW et al (2004) Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc Natl Acad Sci U S A 101:7982–7987

    Article  PubMed  CAS  Google Scholar 

  10. Hsu DK, Chernyavsky AI, Chen HY et al (2009) Endogenous galectin-3 is localized in membrane lipid rafts and regulates migration of dendritic cells. J Invest Dermatol 129:573–583

    Article  PubMed  CAS  Google Scholar 

  11. Nangia-Makker P, Nakahara S, Hogan V et al (2007) Galectin-3 in apoptosis, a novel therapeutic target. J Bioenerg Biomembr 39:79–84

    Article  PubMed  CAS  Google Scholar 

  12. Akahani S, Nangia-Makker P, Inohara H et al (1997) Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res 57:5272–5276

    PubMed  CAS  Google Scholar 

  13. Fukumori T, Kanayama HO, Raz A (2007) The role of galectin-3 in cancer drug resistance. Drug Resist Updat 10:101–108

    Article  PubMed  CAS  Google Scholar 

  14. Mazurek N, Sun YJ, Liu KF et al (2007) Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells. J Biol Chem 282:21337–21348

    Article  PubMed  CAS  Google Scholar 

  15. Fukumori T, Oka N, Takenaka Y et al (2006) Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer. Cancer Res 66:3114–3119

    Article  PubMed  CAS  Google Scholar 

  16. Fukushi J, Makagiansar IT, Stallcup WB et al (2004) NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell 15:3580–3590

    Article  PubMed  CAS  Google Scholar 

  17. Raz A, Meromsky L, Lotan R (1986) Differential expression of endogenous lectins on the surface of nontumorigenic, tumorigenic, and metastatic cells. Cancer Res 46:3667–3672

    PubMed  CAS  Google Scholar 

  18. Ochieng J, Fridman R, Nangia-Makker P et al (1994) Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry 33:14109–14114

    Article  PubMed  CAS  Google Scholar 

  19. Gong HC, Honjo Y, Nangia-Makker P et al (1999) The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res 59:6239–6245

    PubMed  CAS  Google Scholar 

  20. Kim HR, Lin HM, Biliran H et al (1999) Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Res 59:4148–4154

    PubMed  CAS  Google Scholar 

  21. Lin HM, Moon BK, Yu F et al (2000) Galectin-3 mediates genistein-induced G(2)/M arrest and inhibits apoptosis. Carcinogenesis 21:1941–1945

    Article  PubMed  CAS  Google Scholar 

  22. Sano H, Hsu DK, Apgar JR et al (2003) Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 112:389–397

    PubMed  CAS  Google Scholar 

  23. Yang RY, Hsu DK, Liu FT (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A 93:6737–6742

    Article  PubMed  CAS  Google Scholar 

  24. Takenaka Y, Fukumori T, Yoshii T et al (2004) Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol 24:4395–4406

    Article  PubMed  CAS  Google Scholar 

  25. Matarrese P, Tinari N, Semeraro ML et al (2000) Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis. FEBS Lett 473:311–315

    Article  PubMed  CAS  Google Scholar 

  26. Matarrese P, Fusco O, Tinari N et al (2000) Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties. Int J Cancer 85:545–554

    Article  PubMed  CAS  Google Scholar 

  27. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  PubMed  CAS  Google Scholar 

  28. Oka N, Nakahara S, Takenaka Y et al (2005) Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res 65:7546–7553

    PubMed  CAS  Google Scholar 

  29. Bondar VM, Sweeney-Gotsch B, Andreeff M et al (2002) Inhibition of the phosphatidylinositol 3′-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther 1:989–997

    PubMed  CAS  Google Scholar 

  30. Dumont P, Berton A, Nagy N et al (2008) Expression of galectin-3 in the tumor immune response in colon cancer. Lab Invest 88:896–906

    Article  PubMed  CAS  Google Scholar 

  31. Mourad-Zeidan AA, Melnikova VO, Wang H et al (2008) Expression profiling of Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry. Am J Pathol 173:1839–1852

    Article  PubMed  CAS  Google Scholar 

  32. Wang Y, Nangia-Makker P, Tait L et al (2009) Regulation of prostate cancer progression by galectin-3. Am J Pathol 174:1515–1523

    Article  PubMed  CAS  Google Scholar 

  33. Jiang HB, Xu M, Wang XP (2008) Pancreatic stellate cells promote proliferation and invasiveness of human pancreatic cancer cells via galectin-3. World J Gastroenterol 14:2023–2028

    Article  PubMed  CAS  Google Scholar 

  34. Levy R, Grafi-Cohen M, Kraiem Z et al (2010) Galectin-3 promotes chronic activation of k-ras and differentiation block in malignant thyroid carcinomas. Mol Cancer Ther 9:2208–2219

    Article  PubMed  CAS  Google Scholar 

  35. Nangia-Makker P, Raz T, Tait L et al (2007) Galectin-3 cleavage: a novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Res 67:11760–11768

    Article  PubMed  CAS  Google Scholar 

  36. Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  PubMed  CAS  Google Scholar 

  37. Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  PubMed  CAS  Google Scholar 

  38. del Peso L, Gonzalez-Garcia M, Page C et al (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689

    Article  PubMed  CAS  Google Scholar 

  39. Jones RG, Parsons M, Bonnard M et al (2000) Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J Exp Med 191:1721–1734

    Article  PubMed  CAS  Google Scholar 

  40. Mashima T, Tsuruo T (2005) Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat 8:339–343

    Article  PubMed  CAS  Google Scholar 

  41. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    Article  PubMed  CAS  Google Scholar 

  42. Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 96:4240–4245

    Article  PubMed  CAS  Google Scholar 

  43. Wan X, Helman LJ (2003) Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. Oncogene 22:8205–8211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tomoharu Fukumori for supplying the plasmid pGEX-Gal-3. We also thank Hayato Yamauchi and Naritaka Tanaka for their technical assistance and advice. This work was supported in part by a grant 3R37-CA46120-21(AR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Kobayashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T., Shimura, T., Yajima, T. et al. Transient silencing of galectin-3 expression promotes both in vitro and in vivo drug-induced apoptosis of human pancreatic carcinoma cells. Clin Exp Metastasis 28, 367–376 (2011). https://doi.org/10.1007/s10585-011-9376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9376-x

Keywords

Navigation