Skip to main content
Log in

Galectin-3 in apoptosis, a novel therapeutic target

  • Mini Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

During the past decade, extensive progress has been made toward understanding the molecular basis for the regulation of apoptosis. In mammalian cells undergoing apoptosis, two distinct mechanisms or pathways are operated and are triggered by cell death stimuli from intra- or extra-cellular environments, namely the intrinsic or extrinsic pathways, resulting in mitochondrial membrane depolarization. Several lines of evidence from our laboratories and others have indicated that galectin-3 plays an important role in these pathways by binding to various ligands. Here the authors provide a brief discussion on the role of endogenous or extra-cellular galectin-3 in the regulation of apoptosis and how it could be used as a therapeutic target using natural plant products as its functional inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A (1997) Cancer Res 57(23):5272–5276

    Google Scholar 

  • Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME (2002) Mol Cell Biol 22(1):207–220

    Google Scholar 

  • Appella E, Anderson CW (2000) Pathol Biol (Paris) 48(3):227–245

    Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Science 281(5381):1305–1308

    Google Scholar 

  • Avivi-Green C, Madar Z, Schwartz B (2000) Int J Mol Med 6(6):689–698

    Google Scholar 

  • Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) J Biol Chem 269(33):20807–20810

    Google Scholar 

  • Breckenridge DG, Xue D (2004) Curr Opin Cell Biol 16(6):647–652

    Google Scholar 

  • Burlacu A (2003) J Cell Mol Med 7(3):249–257

    Google Scholar 

  • Cecchinelli B, Lavra L, Rinaldo C, Iacovelli S, Gurtner A, Gasbarri A, Ulivieri A, Del Prete F, Trovato M, Piaggio G, Bartolazzi A, Soddu S, Sciacchitano S (2006) Mol Cell Biol 26(12):4746–4757

    Google Scholar 

  • Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L (1997) Immunity 7(6):821–830

    Google Scholar 

  • Chowdhury I, Tharakan B, Bhat GK (2006) Cell Mol Biol Lett xx:xx–xx

  • Cowles EA, Agrwal N, Anderson RL, Wang JL (1990) J Biol Chem 265(29):17706–17712

    Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell 116(2):205–219

    Google Scholar 

  • Delhalle S, Blasius R, Dicato M, Diederich M (2004) Ann N Y Acad Sci 1030:1–13

    Google Scholar 

  • D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S (2002) Nat Cell Biol 4(1):11–19

    Google Scholar 

  • Dumic J, Dabelic S, Flogel M (2006) Biochim Biophys Acta 1760(4):616–635

    Google Scholar 

  • Dumic J, Lauc G, Flogel M (2000) Cell Physiol Biochem 10(3):149–158

    Google Scholar 

  • Elad-Sfadia G, Haklai R, Balan E, Kloog Y (2004) J Biol Chem 279(33):34922–34930

    Google Scholar 

  • Ferri KF, Kroemer G (2001) Bioessays 23(2):111–115

    Google Scholar 

  • Fukumori T, Takenaka Y, Oka N, Yoshii T, Hogan V, Inohara H, Kanayama HO, Kim HR, Raz A (2004) Cancer Res 64(10):3376–3379

    Google Scholar 

  • Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H, Kagawa S, Raz A (2003) Cancer Res 63(23):8302–8311

    Google Scholar 

  • Gong HC, Honjo Y, Nangia-Makker P, Hogan V, Mazurak N, Bresalier RS, Raz A (1999) Cancer Res 59(24):6239–6245

    Google Scholar 

  • Green D, Kroemer G (1998) Trends Cell Biol 8(7):267–271

    Google Scholar 

  • Griffith TS, Lynch DH (1998) Curr Opin Immunol 10(5):559–563

    Google Scholar 

  • Hanada M, Aime-Sempe C, Sato T, Reed JC (1995) J Biol Chem 270(20):11962–11969

    Google Scholar 

  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H, Schmitz ML (2002) Nat Cell Biol 4(1):1–10

    Google Scholar 

  • Hsu DK, Hammes SR, Kuwabara I, Greene WC, Liu FT (1996) Am J Pathol 148(5):1661–1670

    Google Scholar 

  • Huflejt ME, Turck CW, Lindstedt R, Barondes SH, Leffler H (1993) J Biol Chem 268(35):26712–26718

    Google Scholar 

  • Hughes RC (1999) Biochim Biophys Acta 1473(1):172–185

    Google Scholar 

  • Inohara H, Raz A (1994) Glycoconj J 11(6):527–532

    Google Scholar 

  • John CM, Leffler H, Kahl-Knutsson B, Svensson I, Jarvis GA (2003) Clin Cancer Res 9(6):2374–2383

    Google Scholar 

  • Kim HR, Lin HM, Biliran H, Raz A (1999) Cancer Res 59(16):4148–4154

    Google Scholar 

  • Lee YJ, Song YK, Song JJ, Siervo-Sassi RR, Kim HR, Li, L, Spitz DR, Lokshin A, Kim JH (2003) Exp Cell Res 288(1):21–34

    Google Scholar 

  • Li, H, Zhu H, Xu, CJ, Yuan J (1998) Cell 94(4):491–501

  • Liu FT, Patterson RJ, Wang JL (2002) Biochim Biophys Acta 1572(2–3):263–273

    Google Scholar 

  • Liu L, Sakai T, Sano N, Fukui K (2004) Biochem J 380(Pt 1):31–41

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Cell 94(4):481–490

  • Matarrese P, Fusco O, Tinari N, Natoli C, Liu FT, Semeraro ML, Malorni W, Iacobelli S (2000) Int J Cancer 85(4):545–554

    Google Scholar 

  • Missotten M, Nichols A, Rieger K, Sadoul R (1999) Cell Death Differ 6(2):124–129

    Google Scholar 

  • Mitin N, Rossman KL, Der CJ (2005) Curr Biol 15(14):R563–574

    Google Scholar 

  • Moon BK, Lee YJ, Battle P, Jessup JM, Raz A, Kim HR (2001) Am J Pathol 159(3):1055–1060

    Google Scholar 

  • Moutsatsos IK, Wade M, Schindler M, Wang JL (1987) Proc Natl Acad Sci USA 84(18):6452–6456

    Google Scholar 

  • Nagata S (2000) Exp Cell Res 256(1):12–18

    Google Scholar 

  • Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Tait L, Bresalier R, Raz A (2002) J Natl Cancer Inst 94(24):1854–1862

    Google Scholar 

  • Ochieng J, Fridman R, Nangia-Makker P, Kleiner DE, Liotta LA, Stetler-Stevenson WG, Raz A (1994) Biochemistry 33(47):14109–14114

    Google Scholar 

  • Ochieng J, Leite-Browning ML, Warfield P (1998) Biochem Biophys Res Commun 246(3):788–791

    Google Scholar 

  • Oka N, Nakahara S, Takenaka Y, Fukumori T, Hogan V, Kanayama HO, Yanagawa T, Raz A (2005) Cancer Res 65(17):7546–7553

    Google Scholar 

  • Olano-Martin E, Rimbach GH, Gibson GR, Rastall RA (2003) Anticancer Res 23(1A):341–346

    Google Scholar 

  • Patterson SD, Spahr CS, Daugas E, Susin SA, Irinopoulou T, Koehler C, Kroemer G (2000) Cell Death Differ 7(2):137–144

    Google Scholar 

  • Peter ME, Krammer PH (1998) Curr Opin Immunol 10(5):545–551

    Google Scholar 

  • Peter ME, Krammer PH (2003) Cell Death Differ 10(1):26–35

    Google Scholar 

  • Pienta KJ, Naik H, Akhtar A, Yamazaki K, Replogle TS, Lehr J, Donat TL, Tait L, Hogan V, Raz A (1995) J Natl Cancer Inst 87(5):348–353

    Google Scholar 

  • Platt D, Raz A (1992) J Natl Cancer Inst 84(6):438–442

    Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li, F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Embo J 17(6):1675–1687

    Google Scholar 

  • Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME (1998) Eur J Biochem 254(3):439–459

    Google Scholar 

  • Shalom-Feuerstein R, Cooks T, Raz A, Kloog Y (2005) Cancer Res 65(16):7292–7300

    Google Scholar 

  • Sperandio S, Poksay K, de Belle I, Lafuente MJ, Liu B, Nasir J, Bredesen DE (2004) Cell Death Differ 11(10):1066–1075

    Google Scholar 

  • Suliman A, Lam A, Datta R, Srivastava RK (2001) Oncogene 20(17):2122–2133

    Google Scholar 

  • Takenaka Y, Fukumori T, Raz A (2004) Glycoconj J 19(7–9):543– 549

    Google Scholar 

  • Vito P, Pellegrini L, Guiet C, D'Adamio L (1999) J Biol Chem 274(3):1533–1540

    Google Scholar 

  • Vousden KH (2000) Cell 103(5):691–694

  • Xu, XC, el-Naggar AK, Lotan R (1995) Am J Pathol 147(3):815–822

    Google Scholar 

  • Yang RY, Hill PN, Hsu DK, Liu FT (1998) Biochemistry 37(12):4086–4092

    Google Scholar 

  • Yang RY, Hsu DK, Liu FT (1996) Proc Natl Acad Sci USA 93(13):6737–6742

    Google Scholar 

  • Yoshii T, Fukumori T, Honjo Y, Inohara H, Kim HR, Raz A (2002) J Biol Chem 277(9):6852–6857

    Google Scholar 

  • Yu F, Finley Jr RL, Raz A, Kim HR (2002) J Biol Chem 277(18):15819–15827

    Google Scholar 

  • Zou J, Glinsky VV, Landon LA, Matthews L, Deutscher SL (2005) Carcinogenesis 26(2):309–318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Nangia-Makker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nangia-Makker, P., Nakahara, S., Hogan, V. et al. Galectin-3 in apoptosis, a novel therapeutic target. J Bioenerg Biomembr 39, 79–84 (2007). https://doi.org/10.1007/s10863-006-9063-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-006-9063-9

Keywords

Navigation