Skip to main content

Advertisement

Log in

Bosentan® inhibits tumor vascularization and bone metastasis in an immunocompetent skin-fold chamber model of breast carcinoma cell metastasis

  • Original Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Angiogenic factors including endothelin-1 (ET-1) play a key role in the progression of breast metastases to bone. We investigated the impact of ET-1 on the development of bone metastases in an immunocompetent murine skin-fold chamber model. Murine mammary carcinoma 4T1 was injected in a skin-fold chamber implanted on CB6 mice along with bone explants. Furthermore, mice were treated with or without a dual selective antagonist of both ET-1 receptors. The progression of the vascularization within the chamber was monitored over time by intravital microscopy (IVM). The tumor growth and the development of bone metastases were assessed by cytokeratin-19 gene expression and histological studies. Results indicate that this new model associated with IVM allows for the continuous monitoring of the change in vascularization associated with the development of bone metastases. Additionally, treatment with an antagonist of both ET-1 receptors was associated with the presence of significantly less vessels near the tumor mass compared to control mice. These changes were correlated with smaller tumor masses and reduced bone invasion (P < 0.05). Thus, in an immunocompetent murine model of breast carcinoma metastases to bone, our data support the hypothesis that vascularization plays a role in tumor development and progression and that ET-1 specifically modulates the angiogenesis associated with breast metastases to the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipton A (2005) Management of bone metastases in breast cancer. Curr Treat Options Oncol 6:161–171

    Article  PubMed  Google Scholar 

  2. Kozlow W, Guise TA (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10:169–180

    Article  PubMed  Google Scholar 

  3. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115(1):44–55

    PubMed  CAS  Google Scholar 

  4. Chelouche Lev D, Price JE (2002) Therapeutic intervention with breast cancer metastasis. Crit Rev Eukaryot Gene Expr 12:137–150

    Article  PubMed  Google Scholar 

  5. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ, Kaufmann M, Diebold J, Arnholdt H, Muller P et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100:7737–7742

    Article  PubMed  CAS  Google Scholar 

  6. Muller V, Pantel K (2004) Bone marrow micrometastases and circulating tumor cells: current aspects and future perspectives. Breast Cancer Res 6:258–261

    Article  PubMed  Google Scholar 

  7. Mastro AM, Gay CV, Welch DR (2003) The skeleton as a unique environment for breast cancer cells. Clin Exp Metastasis 20:275–284

    Article  PubMed  CAS  Google Scholar 

  8. Rodan GA (2003) The development and function of the skeleton and bone metastases. Cancer 97:726–732

    Article  PubMed  Google Scholar 

  9. Guise TA, Chirgwin JM (2003) Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin Orthop 415:S32–38

    Article  PubMed  Google Scholar 

  10. McDermott RS, Deneux L, Mosseri V, Vedrenne J, Clough K, Fourquet A, Rodriguez J, Cosset JM, Sastre X, Beuzeboc P et al (2002) Circulating macrophage colony stimulating factor as a marker of tumour progression. Eur Cytokine Netw 13:121–127

    PubMed  CAS  Google Scholar 

  11. Aldridge SE, Lennard TW, Williams JR, Birch MA (2005) Vascular endothelial growth factor acts as an osteolytic factor in breast cancer metastases to bone. Br J Cancer 92:1531–1537

    Article  PubMed  CAS  Google Scholar 

  12. Mitsiades C, Sourla A, Doillon C, Lembessis P, Koutsilieris M (2000) Three-dimensional type I collagen co-culture systems for the study of cell–cell interactions and treatment response in bone metastases. J Musculoskelet Neuronal Interact 1:153–155

    PubMed  CAS  Google Scholar 

  13. Mundy G (2001) Preclinical models of bone metastases. Semin Oncol 28:2–8

    Article  PubMed  CAS  Google Scholar 

  14. Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65:6130–6138

    Article  PubMed  CAS  Google Scholar 

  15. Eckhardt BL, Parker BS, van Laar RK, Restall CM, Natoli AL, Tavaria MD, Stanley KL, Sloan EK, Moseley JM, Anderson RL (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3:1–13

    PubMed  CAS  Google Scholar 

  16. Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, Lin P, Dewhirst MW (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92:143–147

    Article  PubMed  CAS  Google Scholar 

  17. Hoffman RM (1998–1999) Orthotopic transplant mouse models with green fluorescent protein-expressing cancer cells to visualize metastasis and angiogenesis. Cancer Metastasis Rev 17:271–277

    Article  Google Scholar 

  18. Yoneda T (2000) Cellular and molecular basis of preferential metastasis of breast cancer to bone. J Orthop Sci 5:75–81

    Article  PubMed  CAS  Google Scholar 

  19. Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J et al (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17:163–170

    Article  PubMed  CAS  Google Scholar 

  20. Linderholm B, Grankvist K, Wilking N, Johansson M, Tavelin B, Henriksson R (2000) Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol 18:1423–1431

    PubMed  CAS  Google Scholar 

  21. Bagnato A, Natali PG (2004) Endothelin receptors as novel targets in tumor therapy. J Transl Med 2:1–16

    Article  Google Scholar 

  22. Guise TA, Yin JJ, Mohammad KS (2003) Role of endothelin-1 in osteoblastic bone metastases. Cancer 97:779–784

    Article  PubMed  Google Scholar 

  23. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    PubMed  CAS  Google Scholar 

  24. Walter-Yohrling J, Morgenbesser S, Rouleau C, Bagley R, Callahan M, Weber W, Teicher BA (2004) Murine endothelial cell lines as models of tumor endothelial cells. Clin Cancer Res 10:2179–2189

    Article  PubMed  CAS  Google Scholar 

  25. Isenberg JS, Ridnour LA, Perruccio EM, Espey MG, Wink DA, Roberts DD (2005) Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci USA 102:13141–13146

    Article  PubMed  CAS  Google Scholar 

  26. Stathopoulos EN, Sanidas E, Kafousi M, Mavroudis D, Askoxylakis J, Bozionelou V, Perraki M, Tsiftsis D, Georgoulias V (2005) Detection of CK-19 mRNA-positive cells in the peripheral blood of breast cancer patients with histologically and immunohistochemically negative axillary lymph nodes. Ann Oncol 16:240–246

    Article  PubMed  CAS  Google Scholar 

  27. de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85:154–159

    PubMed  Google Scholar 

  28. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–534

    PubMed  CAS  Google Scholar 

  29. Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM (2005) Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer 5:S46–S53

    Article  PubMed  CAS  Google Scholar 

  30. Chirgwin JM, Mohammad KS, Guise TA (2004) Tumor-bone cellular interactions in skeletal metastases. J Musculoskelet Neuronal Interact 4:308–318

    PubMed  CAS  Google Scholar 

  31. Myoui A, Nishimura R, Williams PJ, Hiraga T, Tamura D, Michigami T, Mundy GR, Yoneda T (2003) C-SRC tyrosine kinase activity is associated with tumor colonization in bone and lung in an animal model of human breast cancer metastasis. Cancer Res 63:5028–5033

    PubMed  CAS  Google Scholar 

  32. Yoneda T (1997) Arterial microvascularization and breast cancer colonization in bone. Histol Histopathol 12:1145–1149

    PubMed  CAS  Google Scholar 

  33. Bohm P, Huber J (2002) The surgical treatment of bony metastases of the spine and limbs. J Bone Joint Surg Br 84:521–529

    Article  PubMed  CAS  Google Scholar 

  34. Sasaki A, Alcalde RE, Nishiyama A, Lim DD, Mese H, Akedo H, Matsumura T (1998) Angiogenesis inhibitor TNP-470 inhibits human breast cancer osteolytic bone metastasis in nude mice through the reduction of bone resorption. Cancer Res 58:462–467

    PubMed  CAS  Google Scholar 

  35. Vukmirovic-Popovic S, Colterjohn N, Lhotak S, Duivenvoorden WC, Orr FW, Singh G (2002) Morphological, histomorphometric, and microstructural alterations in human bone metastasis from breast carcinoma. Bone 31:529–535

    Article  PubMed  CAS  Google Scholar 

  36. Shirakawa K, Kobayashi H, Sobajima J, Hashimoto D, Shimizu A, Wakasugi H (2003) Inflammatory breast cancer: vasculogenic mimicry and its hemodynamics of an inflammatory breast cancer xenograft model. Breast Cancer Res 5:136–139

    Article  PubMed  Google Scholar 

  37. Van der Auwera I, Van Laere SJ, Van den Eynden GG, Benoy I, van Dam P, Colpaert CG, Fox SB, Turley H, Harris AL, Van Marck EA et al (2004) Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res 10:7965–7971

    Article  PubMed  Google Scholar 

  38. Nelson J, Bagnato A, Battistini B, Nisen P (2003) The endothelin axis: emerging role in cancer. Nat Rev Cancer 3:110–116

    Article  PubMed  CAS  Google Scholar 

  39. Grimshaw MJ, Naylor S, Balkwill FR (2002) Endothelin-2 is a hypoxia-induced autocrine survival factor for breast tumor cells. Mol Cancer Ther 1:1273–1281

    PubMed  CAS  Google Scholar 

  40. Wu-Wong JR (2002) Endothelin receptor antagonists as therapeutic agents for cancer. Curr Opin Investig Drugs 3:1234–1239

    PubMed  CAS  Google Scholar 

  41. Breu V, Ertel SI, Roux S, Clozel M (1998) The pharmacology of bosentan. Expert Opin Investig Drugs 7:1173–1192

    Article  PubMed  CAS  Google Scholar 

  42. Rai A, Gulati A (2003) Evidence for the involvement of ET(B) receptors in ET-1-induced changes in blood flow to the rat breast tumor. Cancer Chemother Pharmacol 51:21–28

    Article  PubMed  CAS  Google Scholar 

  43. Yoneda T, Hiraga T (2005) Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun 328:679–687

    Article  PubMed  CAS  Google Scholar 

  44. Ben-Baruch A (2003) Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor–microenvironment interactions. Breast Cancer Res 5:31–36

    Article  PubMed  CAS  Google Scholar 

  45. Boudreau N, Myers C (2003) Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res 5:140–146

    Article  PubMed  CAS  Google Scholar 

  46. Bremnes T, Paasche JD, Mehlum A, Sandberg C, Bremnes B, Attramadal H (2000) Regulation and intracellular trafficking pathways of the endothelin receptors. J Biol Chem 275:17596–17604

    Article  PubMed  CAS  Google Scholar 

  47. Demunter A, De Wolf-Peeters C, Degreef H, Stas M, van den Oord JJ (2001) Expression of the endothelin-B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch 438:485–491

    Article  PubMed  CAS  Google Scholar 

  48. Grimshaw MJ (2005) Endothelins in breast tumour cell invasion. Cancer Lett 222:129–138

    Article  PubMed  CAS  Google Scholar 

  49. Wulfing P, Kersting C, Tio J, Fischer RJ, Wulfing C, Poremba C, Diallo R, Bocker W, Kiesel L (2004) Endothelin-1-, endothelin-A-, and endothelin-B-receptor expression is correlated with vascular endothelial growth factor expression and angiogenesis in breast cancer. Clin Cancer Res 10(7):2393–2400

    Article  PubMed  Google Scholar 

  50. Bagnato A, Spinella F (2003) Emerging role of endothelin-1 in tumor angiogenesis. Trends Endocrinol Metab 14:44–50

    Article  PubMed  CAS  Google Scholar 

  51. Medinger M, Adler CP, Schmidt-Gersbach C, Soltau J, Droll A, Unger C, Drevs J (2003) Angiogenesis and the ET-1/ETA receptor system: immunohistochemical expression analysis in bone metastases from patients with different primary tumors. Angiogenesis 6:225–231

    Article  PubMed  CAS  Google Scholar 

  52. Guise TA, Mohammad KS (2004) Endothelins in bone cancer metastases. Cancer Treat Res 118:197–212

    PubMed  CAS  Google Scholar 

  53. Guba M, Cernaianu G, Koehl G, Geissler EK, Jauch KW, Anthuber M, Falk W, Steinbauer M (2001) A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res 61:5575–5579

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Markus Paxian (Friedrich Schiller University, Jena, Germany) for his help in developing the model, Cynthia Petty (UNC-Charlotte) for her help with the processing of the histological samples and Katarzyna Korneszczuk (UNC-Charlotte) for her participation in the animal care.

This work was supported by a Junior Faculty Research grant (DD) from the University of North Carolina at Charlotte and a grant from The Susan G. Komen Breast Cancer Foundation (DD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Dréau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dréau, D., Karaa, A., Culberson, C. et al. Bosentan® inhibits tumor vascularization and bone metastasis in an immunocompetent skin-fold chamber model of breast carcinoma cell metastasis. Clin Exp Metastasis 23, 41–53 (2006). https://doi.org/10.1007/s10585-006-9016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9016-z

Keywords

Navigation