Skip to main content

Ear Sponge Assay: A Method to Investigate Angiogenesis and Lymphangiogenesis in Mice

  • Protocol
  • First Online:
Proteases and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1731))

Abstract

Angiogenesis and lymphangiogenesis have become important research areas in the biomedical field. The outgrowth of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels from preexisting ones is involved in many pathologies including cancer. In-depth investigations of molecular determinants such as proteases in these complex processes require reliable in vivo models. Here we present the ear sponge assay as an easy, rapid, quantitative and reproducible model of angiogenesis and lymphangiogenesis. In this system, a gelatin sponge soaked with tumor cells, cell-conditioned medium, or a compound to be tested is implanted, for 2–4 weeks, between the two mouse ear skin layers. The two vascular networks are next examined through histological procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy BY, Lim PK, Silverio K et al (2012) The microenvironmental effect in the progression, metastasis, and dormancy of breast cancer: a model system within bone marrow. Int J Breast Cancer 2012:721659. https://doi.org/10.1155/2012/721659

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Massague J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306. https://doi.org/10.1038/nature17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paupert J, Van de Velde M, Kridelka F et al (2014) Tumor angiogenesis and lymphangiogenesis: microenvironmental soil for tumor progression and metastatic dissemination. In: Feige JJ, Pagès G, Soncin F (eds) Molecular mechanisms of angiogenesis. Springer, Paris, pp 283–306. https://doi.org/10.1007/978-2-8178-0466-8

    Chapter  Google Scholar 

  5. Balsat C, Blacher S, Signolle N et al (2011) Whole slide quantification of stromal lymphatic vessel distribution and peritumoral lymphatic vessel density in early invasive cervical cancer: a method description. ISRN Obstet Gynecol 2011:354861. https://doi.org/10.5402/2011/354861

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7(2):121–127. https://doi.org/10.1016/j.ccr.2005.01.017

    Article  CAS  PubMed  Google Scholar 

  7. Shayan R, Karnezis T, Murali R et al (2012) Lymphatic vessel density in primary melanomas predicts sentinel lymph node status and risk of metastasis. Histopathology 61(4):702–710. https://doi.org/10.1111/j.1365-2559.2012.04310.x

    Article  PubMed  Google Scholar 

  8. Tampellini M, Sonetto C, Scagliotti GV (2016) Novel anti-angiogenic therapeutic strategies in colorectal cancer. Expert Opin Investig Drugs 25(5):507–520. https://doi.org/10.1517/13543784.2016.1161754

    Article  CAS  PubMed  Google Scholar 

  9. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2(9):657–672. https://doi.org/10.1038/nrc884

    Article  CAS  PubMed  Google Scholar 

  10. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233. https://doi.org/10.1038/nrm2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7(10):800–808. https://doi.org/10.1038/nrc2228

    Article  CAS  PubMed  Google Scholar 

  12. Passaniti A (1992) Extracellular matrix-cell interactions: matrigel and complex cellular pattern formation. Lab Investig 67(6):804. author reply 804–808

    CAS  PubMed  Google Scholar 

  13. Benton G, Arnaoutova I, George J et al (2014) Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 79-80:3–18. https://doi.org/10.1016/j.addr.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  14. Cao R, Lim S, Ji H et al (2011) Mouse corneal lymphangiogenesis model. Nat Protoc 6(6):817–826. https://doi.org/10.1038/nprot.2011.359

    Article  CAS  PubMed  Google Scholar 

  15. Detry B, Blacher S, Erpicum C et al (2013) Sunitinib inhibits inflammatory corneal lymphangiogenesis. Invest Ophthalmol Vis Sci 54(5):3082–3093. https://doi.org/10.1167/iovs.12-10856

    Article  CAS  PubMed  Google Scholar 

  16. Laib AM, Bartol A, Alajati A et al (2009) Spheroid-based human endothelial cell microvessel formation in vivo. Nat Protoc 4(8):1202–1215. https://doi.org/10.1038/nprot.2009.96

    Article  CAS  PubMed  Google Scholar 

  17. Karpanen T, Schulte-Merker S (2011) Zebrafish provides a novel model for lymphatic vascular research. Methods Cell Biol 105:223–238. https://doi.org/10.1016/b978-0-12-381320-6.00009-6

    Article  PubMed  Google Scholar 

  18. Ny A, Vandevelde W, Hohensinner P et al (2013) A transgenic Xenopus laevis reporter model to study lymphangiogenesis. Biol Open 2(9):882–890. https://doi.org/10.1242/bio.20134739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kibbey MC, Grant DS, Kleinman HK (1992) Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo matrigel model. J Natl Cancer Inst 84(21):1633–1638

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Caballero M, Van de Velde M, Blacher S et al (2017) Modeling pre-metastatic lymphvascular niche in the mouse ear sponge assay. Sci Rep 7:41494. https://doi.org/10.1038/srep41494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suarez-Carmona M, Bourcy M, Lesage J et al (2015) Soluble factors regulated by epithelial-mesenchymal transition mediate tumour angiogenesis and myeloid cell recruitment. J Pathol 236(4):491–504. https://doi.org/10.1002/path.4546

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Noël .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Van de Velde, M., García-Caballero, M., Durré, T., Kridelka, F., Noël, A. (2018). Ear Sponge Assay: A Method to Investigate Angiogenesis and Lymphangiogenesis in Mice. In: Cal, S., Obaya, A. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 1731. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7595-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7595-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7594-5

  • Online ISBN: 978-1-4939-7595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics