Skip to main content
Log in

Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Northern Europe’s oldest and largest Camellia japonica growing at the Pillnitz Castle (Germany) for over 200 years is of botanical and cultural importance and is a reference for C. japonica molecular scale analysis. In order to provide a fundament for genome analysis of the genus Camellia, we characterize the C. japonica tandem repeat fraction, constituting 12.5 % of the Pillnitz camellia’s genome. A genomic library of the Pillnitz C. japonica was produced and Illumina sequenced to generate 36 Gb of paired-end reads. We performed graph-based read clustering implemented in the RepeatExplorer pipeline to estimate the C. japonica repeat fraction of 73 %. This enabled us to identify and characterize the most prominent satellite DNAs, Camellia japonica satellite 1–4 (CajaSat1–CajaSat4), and the 5S ribosomal DNA (rDNA) by bioinformatics, fluorescent in situ and Southern hybridization. Within the Camellia genus, satellite spreading, array expansion and formation of higher-order structures highlight different modes of repeat evolution. The CajaSat satellites localize at prominent chromosomal sites, including (peri)centromeres and subtelomeres of all chromosomes, thus serving as chromosomal landmarks for their identification. This work provides an insight into the C. japonica chromosome organization and significantly expands the Camellia genomic knowledge, also with respect to the tea plant Camellia sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

bp:

Base pair

BSA:

Bovine serum albumin

CajaSat:

Camellia japonica satellite

cDNA:

Copy DNA

Cy3:

Cyanine 3

DAPI:

4′,6′-Diamidino-2-phenylindole

FISH:

Fluorescent in situ hybridization

FITC:

Fluorescein isothiocyanate

Gb:

Gigabase

LINE:

Long interspersed nuclear element

LTR:

Long terminal repeat

PCR:

Polymerase chain reaction

rDNA:

Ribosomal DNA

rRNA:

Ribosomal RNA

SDS:

Sodium dodecyl sulfate

SSC:

Saline sodium citrate (1× SSC = 0.15 M NaCl + 0.015 M Na3 citrate)

References

  • Ambrozová K, Mandáková T, Bures P et al (2011) Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann Bot 107:255–268

    Article  PubMed Central  PubMed  Google Scholar 

  • Begum R, Zakrzewski F, Menzel G, Weber B, Alam SS, Schmidt T (2013) Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae). Ann Bot 112:123–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Booth WB (1829) History and description of the species of Camellia and Thea and of the varieties of the Camellia japonica that have been imported from China. Trans Hortic Soc Lond 7:519–562

    Google Scholar 

  • Brandes A, Roder MS, Ganal MW (1995) Barley telomeres are associated with two different types of satellite DNA sequences. Chromosom Res 3:315–320

    Article  CAS  Google Scholar 

  • Bůzek J, Koutníková H, Houben A et al (1997) Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosom Res 5:57–65

    Article  Google Scholar 

  • Chang HT, Bartholomew B (1984) Camellias portland. Timber, Oregon

    Google Scholar 

  • Chen CM, Wang CT, Wang CJ et al (1997) Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia. Chromosom Res 5:561–568

    Article  CAS  Google Scholar 

  • Cheng Z, Stupar RM, Gu M, Jiang J (2001) A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma 110:24–31

    Article  CAS  PubMed  Google Scholar 

  • Cloix C, Tutois S, Mathieu O et al (2000) Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res 10:679–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen S, Segal D (2009) Extrachromosomal circular DNA in eukaryotes: possible involvement in the plasticity of tandem repeats. Cytogenet Genome Res 124:327–338

    Article  CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Jong HJ, Fransz P, Zabel P (1999) High resolution FISH in plants—techniques and applications. Trends Plant Sci 4:258–263

    Article  Google Scholar 

  • Dechyeva D, Schmidt T (2006) Molecular organization of terminal repetitive DNA in Beta species. Chromosom Res 14:881–897

    Article  CAS  Google Scholar 

  • Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang J (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007

    Article  CAS  Google Scholar 

  • Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Article  CAS  PubMed  Google Scholar 

  • Drummond A, Ashton B, Buxton S et al (2011) Geneious v5.4. Available from http://www.geneious.com/

  • Fry K, Salser W (1977) Nucleotide sequences of HS-alpha satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084

    Article  CAS  PubMed  Google Scholar 

  • Gindullis F, Desel C, Galasso I, Schmidt T (2001) The large-scale organization of the centromeric region in Beta species. Genome Res 11:253–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong Z, Yu H, Huang J, Yi C, Gu M (2009) Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation. Chromosom Res 17:863–872

    Article  CAS  Google Scholar 

  • Gong Z, Wu Y, Koblizkova A et al (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grebenstein B, Grebenstein O, Sauer W, Hemleben V (1995) Characterization of a highly repeated DNA component of perennial oats (Helictotrichon, Poaceae) with sequence similarity to a A-genome-specific satellite DNA of rice (Oryza). Theor Appl Genet 90:1101–1105

    Article  CAS  PubMed  Google Scholar 

  • Grebenstein B, Grebenstein O, Sauer W, Hemleben V (1996) Distribution and complex organization of satellite DNA sequences in Aveneae species. Genome 39:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Xiao H (2003) Physical mapping of the 18S-26S rDNA by fluorescent in situ hybridization (FISH) in Camellia reticulata polyploid complex (Theaceae). Plant Sci 164:279–285

    Article  CAS  Google Scholar 

  • Hansen WM (1999) Camellias in Germany—past and present. Int Camellia J 31:112–117

    Google Scholar 

  • Heitkam T, Schmidt T (2009) BNR—a LINE family from Beta vulgaris contains an RRM domain in open reading frame 1 and defines a L1 subclade present in diverse plant genomes. Plant J 59:872–882

    Article  CAS  PubMed  Google Scholar 

  • Heitkam T, Holtgräwe D, Dohm JC et al (2014) Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades. Plant J 79:385–397

    Article  CAS  PubMed  Google Scholar 

  • Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodivers 5:277–289

    Article  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organization of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jónsson K et al (1991) In-situ hybridization with automated chromosome denaturation. Technique 3:109–116

    Google Scholar 

  • Huang H, Tong Y, Zhang QJ, Gao LZ (2013) Genome size variation among and within Camellia species by using flow cytometric analysis. PLoS One 8, e64981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang H, Shi C, Liu Y, Mao SY, Gao LZ (2014) Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol 14:151

    Article  PubMed Central  PubMed  Google Scholar 

  • Ingham LD, Hanna WW, Baier JW, Hannah LC (1993) Origin of the main class of repetitive DNA within selected Pennisetum species. Mol Gen Genet 238:350–356

    Article  CAS  PubMed  Google Scholar 

  • Iwata A, Tek AL, Richard MM et al (2013) Identification and characterization of functional centromeres of the common bean. Plant J 76:47–60

    CAS  PubMed  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A et al (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Kelly LJ, Renny-Byfield S, Pellicer J et al (2015) Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol 208:596–607

    Article  CAS  PubMed  Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    Article  CAS  PubMed  Google Scholar 

  • Kondo K (1977) Chromosome numbers in the genus Camellia. Biotropica 9:86–94

    Article  Google Scholar 

  • Kümmel F (1981) The oldest camellias in the German democratic republic. Am Camellia Yearb 36:164–175

    Google Scholar 

  • Lapitan NLV, Ganal MW, Tanksley SD (1989) Somatic chromosome karyotype of tomato based on in situ hybridization of the TGRI satellite repeat. Genome 32:992–998

    Article  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of four sites of 5S rDNA sequences and one site of the alpha-amylase-2 gene in barley (Hordeum vulgare). Genome 36:517–523

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang F, Zhu J, He S, Li L (2009) Characterization of a tandemly repeated subtelomeric sequence with inverted telomere repeats in maize. Genome 52:286–293

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Kudrna D, Wing RA (2011) Construction, characterization, and preliminary BAC-end sequence analysis of a bacterial artificial chromosome library of the tea plant (Camellia sinensis). J Biomed Biotechnol 2011:476723

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin L, Hu Z-Y, Ni S, Li J-Y, Qiu Y-X (2013) Genetic diversity of Camellia japonica (Theaceae), a species endangered to East Asia, detected by inter-simple sequence repeat (ISSR). Biochem Syst Ecol 50:199–206

    Article  CAS  Google Scholar 

  • Liu ZL, Zhang D, Wang XQ, Ma XF, Wang XR (2003) Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines. Am J Bot 90:17–24

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Jiang W, Ghiassi M, Lee S, Nitin M (2012) Classification of Camellia (Theaceae) species using leaf architecture variations and pattern recognition techniques. PLoS One 7, e29704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427

    Article  PubMed Central  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom Proteome Bioinforma 12:164–171

    Article  Google Scholar 

  • Melters DP, Bradnam KR, Young HA et al (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10

    Article  PubMed Central  PubMed  Google Scholar 

  • Menzel G, Heitkam T, Seibt KM et al (2014) The diversification and activity of hAT transposons in Musa genomes. Chromosom Res 22:559–571

    Article  CAS  Google Scholar 

  • Mondal TK (2011) Camellia. In: Wild crop relatives: genomic and breeding resources, plantation and ornamental crops (Kole, C. ed: Springer, pp. 15–39

  • Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinforma 11:378

    Article  Google Scholar 

  • Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793

    Article  PubMed  Google Scholar 

  • Paesold S, Borchardt D, Schmidt T, Dechyeva D (2012) A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. Plant J 72:600–611

    Article  CAS  PubMed  Google Scholar 

  • Plohl M, Luchetti A, Meštrović N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72–82

    Article  CAS  PubMed  Google Scholar 

  • Plohl M, Petrović V, Luchetti A et al (2010) Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity 104:543–551

    Article  CAS  PubMed  Google Scholar 

  • Plohl M, Mestrovic N, Mravinac B (2012) Satellite DNA evolution. Genome Dyn 7:126–152

    Article  CAS  PubMed  Google Scholar 

  • Prince LM, Parks CR (2001) Phylogenetic relationships of Theaceae inferred from chloroplast DNA sequence data. Am J Bot 88:2309–2320

    Article  CAS  PubMed  Google Scholar 

  • Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136

    Article  CAS  PubMed  Google Scholar 

  • Rudd MK, Wray GA, Willard HF (2006) The evolutionary dynamics of α-satellite. Genome Res 16:88–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Savige TJ (1985) The ancient camellias of Europe. Int Camellia J 17:80–82

    Google Scholar 

  • Schmidt T, Heslop-Harrison JS (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195–199

    Article  Google Scholar 

  • Schmidt T, Schwarzacher T, Heslop-Harrison JS (1994) Physical mapping of rRNA genes by fluorescent in-situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theor Appl Genet 88:629–636

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA, von Sternberg R (2005) Why repetitive DNA is essential to genome function. Biol Rev 80:227–250

    Article  PubMed  Google Scholar 

  • Shi CY, Yang H, Wei CL et al (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Short H (2005a) England’s first camellias. Int Camellia J 37:51–56

    Google Scholar 

  • Short H (2005b) The truth about Lord Petre’s camellias. Int Camellia J 37:56–59

    Google Scholar 

  • Singh D, Singh M (2001) Organization of 5S ribosomal RNA genes in tea (Camellia sinensis). Genome 44:143–146

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Datema E, Guzman MO et al (2014) Chromosomal organizations of major repeat families on potato (Solanum tuberosum) and further exploring in its sequenced genome. Mol Genet Genomics 289:1307–1319

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi F, Fukuoka H, Tanaka J (2012) Expressed sequence tags from organ-specific cDNA libraries of tea (Camellia sinensis) and polymorphisms and transferability of EST-SSRs across Camellia species. Breed Sci 62:186–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teixeira FK, Colot V (2010) Repeat elements and the Arabidopsis DNA methylation landscape. Heredity 105:14–23

    Article  CAS  PubMed  Google Scholar 

  • Texnier L (1911) The Camellia Paris Librairie Horticole

  • Tianlu M, Bartholomew B (2010) Theaceae. In: Zhengyi W, Raven PH, Deyuan H (eds) Flora of China. Science & Missouri Botanical Garden, Beijing, pp 366–478

    Google Scholar 

  • Torres GA, Gong Z, Iovene M et al (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome. G3 1:85–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vela P, Couselo JL, Salinero C, González M, Sainz MJ (2009) Morpho-botanic and molecular characterization of the oldest camellia trees in Europe. Int Camellia J 41:51–57

    Google Scholar 

  • Vergnaud G, Denoeud F (2000) Minisatellites: mutability and genome architecture. Genome Res 10:899–907

    Article  CAS  PubMed  Google Scholar 

  • Vershinin AV, Schwarzacher T, Heslop-Harrison JS (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7:1823–1833

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vijayan K, Zhang WJ, Tsou CH (2009) Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. Am J Bot 96:1348–1360

    Article  CAS  PubMed  Google Scholar 

  • Vijayan K, Chung MC, Tsou CH (2012) Dispersion of rDNA loci and its implications on intragenomic variability and phylogenetic studies in Camellia. Sci Hortic 137:59–68

    Article  CAS  Google Scholar 

  • Wang L, Zeng Z, Zhang W, Jiang J (2014) Three potato centromeres are associated with distinct haplotypes with or without megabase-sized satellite repeat arrays. Genetics 196:397–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weber B, Heitkam T, Holtgräwe D et al (2013) Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mob DNA 4:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wollrab C, Heitkam T, Holtgräwe D et al (2012) Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome. Plant J 72:636–651

    Article  CAS  PubMed  Google Scholar 

  • Yang JB, Yang SX, Li HT, Yang J, Li DZ (2013) Comparative chloroplast genomes of Camellia species. PLoS One 8, e73053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zakrzewski F, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T (2010) Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris. BMC Plant Biol 10:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Zakrzewski F, Weber B, Schmidt T (2013) A molecular cytogenetic analysis of the structure, evolution, and epigenetic modifications of major DNA sequences in centromeres of Beta species. In: Plant centromere biology (Jiang, J. and Birchler, J.A. eds): Wiley-Blackwell, pp. 39–55

  • Zhang T, Talbert PB, Zhang W et al (2013) The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci U S A 110:E4875–E4883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Koblížková A, Wang K et al (2014) Boom-bust turnovers of megabase-sized centromeric DNA in Solanum species: rapid evolution of DNA sequences associated with centromeres. Plant Cell 26:1436–1447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong X-B, Fransz PF, Wennekes-van Eden J et al (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J 13:507–517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ines Walter for her excellent technical assistance. Furthermore, we sincerely thank Christoph Neinhuis for supporting our cooperative camellia research initiative. We show gratitude to the TU Dresden Botanical Garden and its camellia collection at the Landschloss Pirna-Zuschendorf for providing the plant material. Moreover, the TU Dresden Center for Information Services and High Performance Computing (ZIH) are acknowledged for computer time allocations.

Author’s contributions

TH and SP wrote the paper. TH designed the research, took part in project coordination and carried out the bioinformatical analysis. SP performed the wet lab experiments and took part in bioinformatical analysis. FZ analyzed satellite higher-order structures. SW provided Illumina sequence data. TS and FZ contributed to writing the manuscript. TS, TW, AK and SW participated in the coordination of the project. All the authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schmidt.

Ethics declarations

Disclosure declaration

The authors declare that they have no competing interests.

Funding

This work was supported by the Staatliche Schlösser, Burgen und Gärten Sachsen gGmbH.

Additional information

Responsible Editor: Hans de Jong

Tony Heitkam and Stefan Petrasch contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 253 kb)

ESM 2

(PDF 109 kb)

ESM 3

(PDF 244 kb)

ESM 4

(PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heitkam, T., Petrasch, S., Zakrzewski, F. et al. Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica . Chromosome Res 23, 791–806 (2015). https://doi.org/10.1007/s10577-015-9500-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9500-x

Keywords

Navigation