Skip to main content
Log in

Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Cowpea (Vigna unguiculata) is an annual legume grown in tropical and subtropical regions, which is economically relevant due to high protein content in dried beans, green pods, and leaves. In this work, a comparative cytogenetic study between V. unguiculata and Phaseolus vulgaris (common bean) was conducted using BAC-FISH. Sequences previously mapped in P. vulgaris chromosomes (Pv) were used as probes in V. unguiculata chromosomes (Vu), contributing to the analysis of macrosynteny between both legumes. Thirty-seven clones from P. vulgaris ‘BAT93’ BAC library, corresponding to its 11 linkage groups, were hybridized in situ. Several chromosomal rearrangements were identified, such as translocations (between BACs from Pv1 and Pv8; Pv2 and Pv3; as well as Pv2 and Pv11), duplications (BAC from Pv3), as well as paracentric and pericentric inversions (BACs from Pv3, and Pv4, respectively). Two BACs (from Pv2 and Pv7), which hybridized at terminal regions in almost all P. vulgaris chromosomes, showed single-copy signal in Vu. Additionally, 17 BACs showed no signal in V. unguiculata chromosomes. The present results demonstrate the feasibility of using BAC libraries in comparative chromosomal mapping and karyotype evolution studies between Phaseolus and Vigna species, and revealed several macrosynteny and collinearity breaks among both legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

CABMV:

Cowpea aphid born mosaic virus

CPSMV:

Cowpea severe mosaic virus

DAPI:

4′,6-Diamidino-2-phenylindole

FISH:

Fluorescent in situ hybridization

LG:

Linkage group

Mya:

Million years ago

rDNA:

Ribosomal DNA

SSC:

Saline-sodium citrate

References

  • Almeida CCS, Pedrosa-Harand A (2013) High macro-collinearity between lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.) as revealed by comparative cytogenetic mapping. Theor Appl Genet 126:1909–1916

    Article  PubMed  Google Scholar 

  • Amarillo FIE, Bass HW (2011) A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization Map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion. Genetics 177:1509–1526

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Bonifácio EM, Fonsêca A, Almeida C, Santos KGB, Pedrosa-Harand A (2012) Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.). Theor Appl Genet 124:1513–1520

    Article  PubMed  Google Scholar 

  • Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M et al (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 1: 93-103. y of Pernambuco

  • Bortoleti KCA, Benko-Iseppon AM, Melo NF, Brasileiro-Vidal AC (2012) Chromatin differentiation between Vigna radiata (L.) R. Wilczek and V. unguiculata (L.) Walp. (Fabaceae). Plant Syst Evol 298:689–693

    Article  Google Scholar 

  • Boutin SR, Young ND, Olson TC, Yu Z-H, Shoemaker RC, Vallejos CE (1995) Genome conservation among three legume genera detected with DNA markers. Genome 38:928–937

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CR, Saraiva LS (1993) An air drying technique for maize chromosomes without enzymatic maceration. Biotech Histochem 68:142–145

    Article  PubMed  Google Scholar 

  • Choi H-K, Mun J-H, Kim D-J et al (2004) Estimating genome conservation between crop and model legume species. Agric Sci 101:15289–15294

    CAS  Google Scholar 

  • Choi HW, Kim M-Y, Lee S-H, Sultana S, Bang J-W (2013) Molecular cytogenetic analysis of the Vigna species distributed in Korea. Genes Genom 35:257–264

    Article  Google Scholar 

  • David P, Chen NWG, Pedrosa-Harand A et al (2009) A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiol 151:1048–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delgado-Salinas A, Bibler R, Lavin M (2006) Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot 31:779–791

    Article  Google Scholar 

  • Delgado-Salinas A, Thulin M, Pasquet R, Weeden N, Lavin M (2011) Vigna (Leguminosae) sensu lato: the names and identities of the American segregate genera. Am J Bot 98:1694–1715

    Article  PubMed  Google Scholar 

  • Figueroa DM, Davis JD, Strobel C et al (2011) The selection and Use of sorghum (sorghum propinquum) bacterial artificial chromosomes as cytogenetic FISH probes for maize (Zea mays L.). J Biomed Biotechnol 1:16

    Google Scholar 

  • Findley SD, Cannon S, Varala K (2010) A fluorescence in situ hybridization system for karyotyping soybean. Genet 185:727–744

    Article  CAS  Google Scholar 

  • Fonsêca AFA (2010) Evolução cariotípica no gênero Phaseolus L.: mapeamento comparativo entre P. microcarpus Mart. e o feijão comum (P. vulgaris L.), MSc Thesis, Federal University of Pernambuco

  • Fonsêca AFA, Pedrosa-Harand A (2013) Karyotype stability in the genus Phaseolus evidenced by the comparative mapping of the wild species Phaseolus microcarpus. Genome 56:335–343

    Article  PubMed  Google Scholar 

  • Fonsêca AFA, Ferreira J, Santos TRB et al (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromos Res 18:487–502

    Article  Google Scholar 

  • Freyre R, Skroch PW, Geffroy V et al (1998) Towards an integrated linkage map of common bean: 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Galasso I, Schmidt T, Pignone D, Heslop-Harrison JS (1995) The molecular cytogenetics of Vigna unguiculata (L.) Walp: the physical organization and characterization of 18S-5,8S-25S rRNA genes, 5S rRNA genes, telomere-like sequences, and a family of centromeric repetitive DNA sequences. Theor Appl Genet 91:928–935

    CAS  PubMed  Google Scholar 

  • Guerra M, Kenton A, Bennett MD (1996) RDNA sites in mitotic and polytene chromosomes of Vigna unguiculata (L.) walp and Phaseolus coccineus L. Revealed by fluorescent in situ hybridization. Ann Bot 78:157–161

    Article  CAS  Google Scholar 

  • Hay AS, Pieper B, Cooke E et al (2014) Cardamine hirsuta: a versatile genetic system for comparative studies. Plant J 78:1–15

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwazarcher T, Anamthawat-Jónsson K, Leitch AR, Shi M (1991) In situ hybridization with automated chromosome denaturation. Technique 3:109–115

    Google Scholar 

  • Heslop-Harrison JS, Harrison GE, Leitch IJ (1992) Reprobing of DNA: DNA in situ hybridization preparations. Trends Genet 8:372–373

    Article  CAS  PubMed  Google Scholar 

  • Hougaard BK, Madsen LH, Sandal N et al (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics 179:2299–2312

    Article  PubMed Central  PubMed  Google Scholar 

  • Huynh BL, Close TJ, Roberts PA et al (2013) Gene pools and the genetic architecture of domesticated cowpea. Plant Genome 6:2

    Article  Google Scholar 

  • Iwata A, Greenland CM, Jackson SA (2013) Cytogenetics of legumes in the phaseoloid clade. Plant Genome 6:3

    Article  Google Scholar 

  • Kang YJ, Kim SK, Kim MY et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nature 5:5443

    CAS  Google Scholar 

  • Kido EA, Barbosa PK, Ferreira Neto JCR et al (2011) Identification of plant protein kinases in response to abiotic and biotic stresses using SuperSAGE. Curr Protein Pept Sci 12:643–656

    Article  CAS  PubMed  Google Scholar 

  • Koumbaris GL, Bass HW (2003) A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Plant J 35:647–659

    Article  CAS  PubMed  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:575–594

    Article  PubMed  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Genetics 14:49–61

    CAS  PubMed  Google Scholar 

  • Lou Q, Iovene M, Spooner DM, Buell CR, Jiang J (2010) Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 119:435–442

    Article  CAS  PubMed  Google Scholar 

  • Lucas MR, Diop N-N, Wanamaker S, Ehlers JD, Roberts PA, Close TJ (2011) Cowpea–soybean synteny clarified through an improved genetic map. Plant Genome 4:218–225

    Article  CAS  Google Scholar 

  • Lysak MA, Mandáková T (2010) Lacombe b reciprocal and multi-species chromosome BAC painting in crucifers (brassicaceae). Cytogenet Genome Res 129:184–189

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Berr A, Pecinka A, Schmidt R, Mcbreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Plant Biol 103:13

    Google Scholar 

  • Ma L, Vu GTH, Schubert V et al (2010) Synteny between brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Res 18:841–850

    Article  CAS  PubMed  Google Scholar 

  • Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (brassicaceae). Plant Cell 20:2559–2570

    Article  PubMed Central  PubMed  Google Scholar 

  • Maréchal R, Mascherpa JM, Stainier F (1978) Étude taxonomique d’un groupe complexe d’espèces de genres Phaseolus et Vigna (Papilionaceae) sur la base de donneés morphologiques et polliniques, traiteés par l’analyse informatique. Boissiera 28:1–273

    Google Scholar 

  • McClean PE, Mamidi S, Mcconnell M, Chikara S, Lee R (2010) Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. Genomics 11:184

    Article  PubMed Central  PubMed  Google Scholar 

  • McConnell M, Mamidi S, Lee R et al (2010) Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 121:1103–1116

    Article  PubMed  Google Scholar 

  • Mendes S, Moraes AP, Mirkov TE, Pedrosa-Harand A (2011) Chromosome homeologies and high variation in heterochromatin distribution between Citrus L. and Poncirus Raf. as evidenced by comparative cytogenetic mapping. Chromosome Res 19:521–530

    Article  CAS  PubMed  Google Scholar 

  • Menéndez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred domesticated lines. Theor Appl Genet 95:1210–1217

    Article  Google Scholar 

  • Muchero W, Diop NN, Bhat PR et al (2009) A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp] and synteny based on EST-derived SNPs. Agric Sci 106:43

    Google Scholar 

  • Murray J, Larsen J, Michaels TE, Schaafsma A, Vallejos CE, Pauls KP (2002) Identification of putative genes in bean (Phaseolus vulgaris) genomic (Bng) RFLP clones and their conversion to STSs. Genome 45:1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD (2002) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome 45:175–188

    Article  PubMed  Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pedrosa-Harand A, Kami J, Geffroy V, Gepts P, Schweizer D (2009) Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromos Res 17:405–417

    Article  CAS  Google Scholar 

  • Ribeiro T, Santos KGB, Fonsêca AFA, Pedrosa-Harand A (2011) Isolation and characterization of a new repetitive DNA family recently amplified in the Mesoamerican gene pool of the common bean (Phaseolus vulgaris L., Fabaceae). Genetica 139:1135–1142

    Article  PubMed  Google Scholar 

  • Richard MMS, Chen NG, Hareau V et al (2013) The subtelomeric khipu satellite repeat from Phaseolus vulgaris: lessons learned from the genome analysis of the Andean genotype G19833. Plant Genet Genomic 4:109

    Google Scholar 

  • Sato S, Isobe S, Tabata S (2010) Structural analyses of the genomes in legumes. Curr Opin Plant Biol 13:1–7

    Article  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nature 46:707–713

    CAS  Google Scholar 

  • Schrire BD (2005) Tribe Phaseoleae. In: Lewis GP, Schrire B, Mackinder B, Lock M (eds) Legumes of the world. Royal Botanic Gardens, Kew, UK, pp 393–431

    Google Scholar 

  • Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization, 1st edn. BIOS Scientific, Oxford

    Google Scholar 

  • Shirasawa K, Bertioli DJ, Varshney RK et al (2013) Integrated consensus Map of cultivated peanut and wild relatives reveals structures of the a and B genomes of arachis and divergence of the legume genomes. DNA Res 20:173–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soares-Cavalcanti NM, Pandolfi V, Kido EA, Belarmino LC, Houllou-Kido LM, Benko-Iseppon AM (2011) Perfil geral de expressão associado à tolerância à salinidade e seca em feijão caupi (Vigna unguiculata). In: Trabalhos apresentados no Simpósio sobre Tolerância à Deficiência Hídrica em Plantas: Adaptando as culturas ao clima do futuro, ISSN 1678-9644, Goiânia, Embrapa Documentos. 265: 65-75.

  • Stefanovic S, Pfeil BE, Palmer JD, Doyle JJ (2009) Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst Bot 34:115–128

    Article  Google Scholar 

  • Szinay D, Wijnker E, Van Den Berg R, Visser RGF, de Jong H, Bai Y (2012) Chromosome evolution in Solanum traced by cross-species BAC-FISH. New Phytol 195:688–698

    Article  CAS  PubMed  Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    PubMed Central  CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Tao Y, Zheng Z et al (2013) Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS One 8:e64799–e64799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young ND, Bharti AK (2012) Genome-enabled insights into legume biology. Annu Rev Plant Biol 63:14.1–14.23

    Article  Google Scholar 

  • Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zwick MS, Hanson RR, Mcknight TD et al (1997) A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 40:138–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Embrapa Meio-Norte (Teresina, Brazil) and Embrapa Arroz e Feijão (Santo Antônio de Goiás, Brazil) for supplying seeds, and also CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Pessoal de Nível Superior) and FACEPE (Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco) for financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Christina Brasileiro-Vidal.

Additional information

Responsible Editor: Jiming Jiang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasconcelos, E.V., de Andrade Fonsêca, A.F., Pedrosa-Harand, A. et al. Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH. Chromosome Res 23, 253–266 (2015). https://doi.org/10.1007/s10577-014-9464-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-014-9464-2

Keywords

Navigation