Skip to main content
Log in

The R2 mobile element of Rhynchosciara americana: Molecular, cytological and dynamic aspects

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Ribosomal RNA genes are encoded by large units clustered (18S, 5S, and 28S) in the nucleolar organizer region in several organisms. Sometimes additional insertions are present in the coding region for the 28S rDNA. These insertions are specific non-long terminal repeat retrotransposons that have very restricted integration targets within the genome. The retrotransposon present in the genome of Rhynchosciara americana, RaR2, was isolated by the screening of a genomic library. Sequence analysis showed the presence of conserved regions, such as a reverse transcriptase domain and a zinc finger motif in the amino terminal region. The insertion site was highly conserved in R. americana and a phylogenetic analysis showed that this element belongs to the R2 clade. The chromosomal localization confirmed that the RaR2 mobile element was inserted into a specific site in the rDNA gene. The expression level of RaR2 in salivary glands during larval development was determined by quantitative RT-PCR, and the increase of relative expression in the 3P of the fourth instar larval could be related to intense gene activity characteristic of this stage. 5′-Truncated elements were identified in different DNA samples. Additionally, in three other Rhynchosciara species, the R2 element was present as a full-length element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LINE:

long interspersed nuclear element

LTR:

long terminal repeat

mRNA:

messenger RNA

qPCR:

quantitative PCR

rDNA:

ribosomal DNA

rRNA:

ribosomal RNA

RT:

reverse transcriptase

SG:

salivary gland

SINE:

short interspersed nuclear element

UTR:

untranslated region

YL:

young larvae

References

  • Andrade A, Rezende-Teixeira P, Siviero F, Santelli RV (2005) A shortcut in phage screening technique. Gen Mol Biol 1:150–151

    Google Scholar 

  • Averbeck KT, Eickbush TH (2005) Monitoring the mode and tempo of concerted evolution in the Drosophila melanogaster rDNA locus. Genetics 171(4):1837–1846

    Article  PubMed  CAS  Google Scholar 

  • Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271(5252):1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  CAS  Google Scholar 

  • Breuer ME, Pavan C (1955) Behavior of polytene chromosomes of Rhynchosciara angelae at different stages of larval development. Chromosoma 7:371–386

    Article  Google Scholar 

  • Burke WD, Calalang CC, Eickbush TH (1987) The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol Cell Biol 7(6):2221–2230

    PubMed  CAS  Google Scholar 

  • Burke WD, Eickbush DG, Xiong Y, Jakubczak J, Eickbush TH (1993) Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. Mol Biol Evol 10(1):163–185

    PubMed  CAS  Google Scholar 

  • Burke WD, Malik HS, Jones JP, Eickbush TH (1999) The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. Mol Biol Evol 16(4):502–511

    PubMed  CAS  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  PubMed  CAS  Google Scholar 

  • Christensen SM, Bibillo A, Eickbush TH (2005) Role of the Bombyx mori R2 element N-terminal domain in the target-primed reverse transcription (TPRT) reaction. Nucleic Acids Res 33(20):6461–6468

    Article  PubMed  CAS  Google Scholar 

  • Eickbush DG, Eickbush TH (1995) Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. Genetics 139(2):671–684

    PubMed  CAS  Google Scholar 

  • Eickbush DG, Eickbush TH (2003) Transcription of endogenous and exogenous R2 elements in the rRNA gene locus of Drosophila melanogaster. Mol Cell Biol 23(11):3825–3836

    Article  PubMed  CAS  Google Scholar 

  • Eickbush TH, Robins B (1985) Bombyx mori 28 S ribosomal genes contain insertion elements similar to the Type I and II elements of Drosophila melanogaster. EMBO J 4(9):2281–2285

    PubMed  CAS  Google Scholar 

  • Eickbush DG, Luan DD, Eickbush TH (2000) Integration of Bombyx mori R2 sequences into the 28 S ribosomal RNA genes of Drosophila melanogaster. Mol Cell Biol 20(1):213–223

    Article  PubMed  CAS  Google Scholar 

  • Eickbush DG, Ye J, Zhang X, Burke WD, Eickbush TH (2008) Epigenetic regulation of retrotransposon within the nucleolus of Drosophila. Mol Cell Biol 28(20):6452–6461

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred, 2. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier LD, Wendl MC, Green P (1998) Basecalling of automated sequencer traces using phred, 1. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5(4):103–107

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara H, Ogura T, Takada N, Miyajima N, Ishikawa H, Maekawa H (1984) Introns and their flanking sequences of Bombyx mori rDNA. Nucleic Acids Res 12(17):6861–6869

    Article  PubMed  CAS  Google Scholar 

  • Gambarini AG, Meneghini R (1972) Ribosomal RNA genes in salivary gland and ovary of Rhynchosclara angelae. J. Cell Biol. 54(2):421–426

    Article  PubMed  CAS  Google Scholar 

  • George JA, Burke WD, Eickbush TH (1996) Analysis of the 5′ junctions of R2 insertions with the 28 S gene: implications for non-LTR retrotransposition. Genetics 142(3):853–863

    PubMed  CAS  Google Scholar 

  • George JA, DeBaryshe PG, Traverse KL, Celniker SE, Pardue ML (2006) Genomic organization of the Drosophila telomere retrotransposable elements. Genome Res 16(10):1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR (2006) Characteristics of the nuclear (18 S, 5.8 S, 28 S and 5 S) and mitochondrial (12 S and 16 S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Mol Biol 15(5):657–686

    Google Scholar 

  • Glover DM, Hogness DS (1977) A novel arrangement of the 18 S and 28 S sequences in a repeating unit of Drosophila melanogaster rDNA. Cell 10(2):167–176

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consedi a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  • Jakubczak JL, Zenni MK, Woodruff RC, Eickbush TH (1992) Turnover of R1 (type I) and R2 (type II) retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. Genetics 131(1):129–142

    PubMed  CAS  Google Scholar 

  • Jamrich M, Miller OL Jr (1984) The rare transcripts of interrupted rRNA genes in Drosophila melanogaster are processed or degraded during synthesis. EMBO J 3(7):1541–1545

    PubMed  CAS  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. [Review]. Science 303(5664):1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kerrebrock AW, Srivastava R, Gerbi SA (1989) Isolation and characterization of ribosomal DNA variants from Sciara coprophila. J Mol Biol 210:1–13

    Article  PubMed  CAS  Google Scholar 

  • Lara FJS, Tamaki H, Pavan C (1965) Laboratory culture of Rhynchosciara angelae. Am Nature 99:189–191

    Article  Google Scholar 

  • Long EO, Dawid IB (1979) Expression of ribosomal DNA insertions in Drosophila melanogaster. Cell 18:1185–1196

    Article  PubMed  CAS  Google Scholar 

  • Machado-Santelli GM, Basile R (1975) DNA replication and DNA puffs in salivary chromosomes of Rhynchosciara. Ciência e Cultura 27(2):167–174

    CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pérez-González CE, Eickbush TH (2002) Rates of R1 and R2 retrotransposition and elimination from the rDNA locus of Drosophila melanogaster. Genetics 162(2):799–811

    PubMed  Google Scholar 

  • Rezende-Teixeira P, Siviero F, Andrade A, Santelli RV, Machado-Santelli GM (2008a) Mariner-like elements in Rhynchosciara americana (Sciaridae) genome: molecular and cytological aspects. Genetica 133(2):137–145

    Article  PubMed  CAS  Google Scholar 

  • Rezende-Teixeira P, Siviero F, Brandão AS, Santelli RV, Machado-Santelli GM (2008b) Molecular characterization of a retrotransposon in the Rhynchosciara americana genome and its association with telomere. Chromosome Res 16(5):729–742

    Article  PubMed  CAS  Google Scholar 

  • Roiha H, Miller JR, Woods LC, Glover DM (1981) Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster. Nature 290(5809):749–753

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Evol Biol 4(4):406–425

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santelli RV, Navarro-Cattapan LD (2000) A simplified CsCl protocol for lambda DNA purification: no enzymatic treatment/one phenol extraction. Gen Mol Biol 23(1):65–66

    CAS  Google Scholar 

  • Santelli RV, Navarro-Cattapan LD, Machado-Santelli GM (1996) Cloning of the histone-gene repeat of Rhynchosciara americana. J Brazilian Assoc Adv Sci 48:313–316

    CAS  Google Scholar 

  • Santelli RV, Siviero F, Machado-Santelli GM, Lara FJS, Stocker AJ (2004) Molecular characterization of the B-2 DNA puff gene of Rhynchosciara americana. Chromosoma 113:167–176

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Wellauer PK, Dawid IB, Tartof KD (1978) X and Y chromosomal ribosomal DNA of Drosophila: comparison of spacers and insertions. Cell 14(2):269–278

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DL, Chappey C, Lash AE et al (2000) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 28(1):10–14

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Burke WD, Jakubczak JL, Eickbush TH (1988) Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28 S genes. Nucleic Acids Res 16(22):10561–10573

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Eickbush TH (2006) Chromatin structure and transcription of the R1- and R2-inserted rRNA genes of Drosophila melanogaster. Mol Cell Biol 26(23):8781–8790

    Article  PubMed  CAS  Google Scholar 

  • Zaha A, Leoncini O, Hollenberg CP, Lara FJ (1982) Cloning and characterization of the ribosomal RNA genes of Rhynchosciara americana. Chromosoma 87(1):103–116

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Eickbush TH (2005) Characterization of active R2 retrotransposition in the rDNA locus of Drosophila simulans. Genetics 170(1):195–205

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhou J, Eickbush TH (2008) Rapid R2 retrotransposition leads to the loss of previously inserted copies via large deletions of the rDNA locus. Mol Biol Evol 25(1):229–237

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paolo M.A. Zanotto, Juliana Velasco and Fernando Lucas Melo for the sequencing support, and financial support and fellowship from FAPESP and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Rezende-Teixeira.

Additional information

Responsible Editor: Herbert Macgregor

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

Nucleotide sequence and conceptual translation of the consensus sequence of the RaR2 non-LTR retrotransposon of Rhynchosciara americana. The insertion site is shown in 28 S rDNA and some conserved motifs such as the CCHH amino acid motif with double underline and the reverse transcriptase domain in italic bold. The main reverse transcriptase domains are underlined and numbered in the sequence. In the carboxyl-terminal region, the CCHC motif is dotted and the KPDLV conserved domain is in gray (PDF 26 kb)

Fig. S2

Alignment of the amino acid sequences of the R2 retrotransposon ORFs of Rhynchosciara americana (R. americana), Bradysia coprophila (B. coprophila), and Bombyx mori (Burke et al. 1987, 1993): Gray and black boxes indicate identical and conserved replacement amino acids (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezende-Teixeira, P., Siviero, F., da Costa Rosa, M. et al. The R2 mobile element of Rhynchosciara americana: Molecular, cytological and dynamic aspects. Chromosome Res 17, 455–467 (2009). https://doi.org/10.1007/s10577-009-9038-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9038-x

Keywords

Navigation