Skip to main content
Log in

Mariner-like elements in Rhynchosciara americana (Sciaridae) genome: molecular and cytological aspects

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Two mariner-like elements, Ramar1 and Ramar2, are described in the genome of Rhynchosciara americana, whose nucleotide consensus sequences were derived from multiple defective copies containing deletions, frame shifts and stop codons. Ramar1 contains several conserved amino acid blocks which were identified, including a specific D,D(34)D signature motif. Ramar2 is a defective mariner-like element, which contains a deletion overlapping in most of the internal region of the transposase ORF while its extremities remain intact. Predicted transposase sequences demonstrated that Ramar1 and Ramar2 phylogenetically present high identity to mariner-like elements of mauritiana subfamily. Southern blot analysis indicated that Ramar1 is widely represented in the genome of Rhynchosciara americana. In situ hybridizations showed Ramar1 localized in several chromosome regions, mainly in pericentromeric heterochromatin and their boundaries, while Ramar2 appeared as a single band in chromosome A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Augé-Gouillou C, Bigot Y, Pollet N, Hamelin MH, Meunier-Rotival M, Periquet G (1995) Human and other mammalian genomes contain transposons of the mariner family. FEBS Lett 368:541–546

    Article  PubMed  Google Scholar 

  • Augé-Gouillou C, Bigot Y, Periquet G (1999) Mariner-like sequences are present in the genome of the fruitfly, Drosophila melanogaster. J Evol Biol 12:742–745

    Article  Google Scholar 

  • Augé-Gouillou C, Hamelin MH, Demattci MV, Periquet G, Bigot Y (2001) The ITR binding domain of the mariner Mos-1 transposase. Mol Genet Genomics 265:58–65

    Article  PubMed  Google Scholar 

  • Breuer ME, Pavan C (1955) Behavior of polytene chromosomes of Rhynchosciara angelae at different stages of larval development. Chromosoma 7:371–386

    Article  Google Scholar 

  • Craig NL (1995) Unity in transposition reactions. Science 270:253–254

    Article  PubMed  CAS  Google Scholar 

  • Doak TG, Doerder FP, Jahn CL, Herrick G (1994) A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D,35E” motif. Proc Natl Acad Sci USA 91:942–946

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred, 2. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier LD, Wendl MC, Green P (1998) Basecalling of automated sequencer traces using phred, 1. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Ficq A, Pavan C (1957) Autoradiography of polytene chromosomes of Rhynchosciara angelae at different stages of larval development. Nature 180:983–984

    Article  PubMed  CAS  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    Article  PubMed  CAS  Google Scholar 

  • Gomulski LM, Torti C, Malacrida AR, Gasperi G (1997) Ccmar1, a full-length mariner element from the Mediterranean fruit fly, Ceratitis capitata. Insect Mol Biol 6:241–253

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consedi a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  • Green CL, Frommer M (2001) The genome of the Queensland fruit fly Bactrocera tryoni contains multiple representatives of the mariner family of transposable elements. Insect Mol Biol 10:371–386

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Lohe AR, Lozovskaya ER (1997a) Modern thoughts on an ancient marinere: function, evolution, regulation. Ann Rev Genet 31:337–358

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Lohe AR, Lozovskaya ER (1997b) Regulation of the transposable element mariner. Genetica 100:177–184

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Lozovskaya ER, Nurminsky DI, Lohe AR (1997c) What restricts the activity of mariner like transposable element. Trends Genet 31:197–201

    Article  Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposase element in Drosophila. Proc Natl Acad Sci USA 83:8684–8688

    Article  PubMed  CAS  Google Scholar 

  • Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE (2002) The transposable elements of Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3:84.1–84.20

    Article  Google Scholar 

  • Kumaresan G, Mathavan S (2004) Molecular diversity and phylogenetic analysis of mariner-like transposons in the genome of the silkworm Bombyx mori. Insect Mol Biol 13:259–271

    Article  PubMed  CAS  Google Scholar 

  • Lampe DJ, Witherspoon DJ, Soto-Adames FN, Robertson HM (2003) Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol Biol Evol 20:554–562

    Article  PubMed  CAS  Google Scholar 

  • Langin T, Capy P, Daboussi MJ (1995) The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet 246:19–28

    Article  PubMed  CAS  Google Scholar 

  • Lara FJS, Tamaki H, Pavan C (1965) Laboratory culture of Rhynchosciara angelae. Am Nature 99:189–191

    Article  Google Scholar 

  • Leroy H, Castagnone-Sereno P, Renault S, Augé-Gouillou C, Bigot Y, Abad P (2003) Characterization of Mcmar1, a mariner-like element with large inverter terminal repeats (ITRs) from the phytoparasitic nematode Meloidogyne chitwoodi. Gene 304:35–41

    Article  PubMed  CAS  Google Scholar 

  • Lohe AR, Moriyame EN, Lidholm DA, Hartl DL (1995) Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol 12:62–72

    PubMed  CAS  Google Scholar 

  • Mandrioli M (2003) Identification and chromosomal localization of mariner-like elements in the cabbage moth Mamestra brassicae (Lepidoptera). Chromosome Res 11:319–322

    Article  PubMed  CAS  Google Scholar 

  • Nonato E, Pavan C (1951) A new species of Rhynchosciara Rubsaamen, 1894 (Diptera, Mycetophilidae). Rev Brasil Biol 11:435–437

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pietrokovski S, Henikoff S (1997) A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Mol Gen Genet 254:689–695

    Article  PubMed  CAS  Google Scholar 

  • Prasad MD, Nagaraju J (2003) A comparative phylogenetic analysis of full-length mariner elements isolated from Indian tasar silkmoth, Antheraea mylitta (Lepidoptera: saturniidae). J Biosci 28:443–453

    Article  PubMed  CAS  Google Scholar 

  • Ren X, Park Y, Miller TA (2006) Intact mariner-like element in tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). Insect Mol Biol 15:743–748

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362:241–245

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, MacLeod EG (1993) Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol 2:125–139

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Lampe DJ (1995) Distribution of transposable elements in arthropods. Annu Rev Entomol 40:333–357

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Asplund ML (1996) Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochem Mol Biol 26:945–954

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Walden KKO (2003) Bmmar6, a second mori subfamily mariner transposon from the silkworm moth Bombyx mori. Insect Mol Biol 12:167–171

    Article  PubMed  CAS  Google Scholar 

  • Rudkin GT, Corlette SL (1957) Disproportionate synthesis of DNA in polytene chromosome region. Proc Natl Acad Sci 43:964–968

    Article  PubMed  CAS  Google Scholar 

  • Russell VW, Shukle RH (1997) Molecular and cytological analysis of a mariner transposon from Hessian fly. J Hered 88:72–76

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Evol Biol 4(4):406–425

    CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santelli RV, Siviero F, Machado-Santelli GM, Lara FJS, Stocker AJ (2004) Molecular characterization of the B-2 DNA puff gene of Rhynchosciara americana. Chromosoma 113:167–176

    Article  PubMed  CAS  Google Scholar 

  • Shao H, Tu Z (2001) Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E tranposon and reclassification of the DD37D and DD39D transposons. Genetics 159:1103–1115

    PubMed  CAS  Google Scholar 

  • Siviero F, Rezende-Teixeira P, Andrade A, Machado-Santelli GM, Santelli RV (2006) Analysis of expressed sequence tags from Rhynchosciara americana salivary glands. Insect Mol Biol 15:109–118

    Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Torti C, Gomulski LM, Malacrida AR, Capy P, Gasperi G (1998) Characterization and evolution of mariner elements from closely related species of fruit flies (Diptera: Tephritidae). J Mol Evol 46:288–298

    Article  PubMed  CAS  Google Scholar 

  • van Luenen HG, Colloms SD, Plasterk RH (1994) The mechanism of transposition of Tc3 in C. elegans. Cell 79:293–301

    Article  PubMed  Google Scholar 

  • Zakharkin SO, Willis RL, Litvinova OV, Jinwal UK, Headley VV, Benes H (2004) Identification of two mariner-like elements in the genome of the mosquito Ochlerotatus atropalpus. Insect Biochem Mol Biol 34:377–386

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Staten RT, Miller A, Park Y (2005) Inactivated mariner-like elements (MLE) in pink bollworm, Pectinophora gossypiella. Insect Mol Biol 14:547–553

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA, Rapp BA (2000) Database resources of the National Center for Biotechnology Information. Nucl Acids Res 28(1):10–14

    Article  PubMed  CAS  Google Scholar 

  • Yoshiyama M, Honda H, Shono T, Kimura K (2000) Survey of mariner-like elements in the housefly, Musca domestica. Genetica 108:81–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Dr. Paolo M.A. Zanotto and Juliana Velasco for the sequencing support and Roberto Cabado for preparing confocal images. We thank the FAPESP and CNPq by financial support and fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Rezende-Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezende-Teixeira, P., Siviero, F., Andrade, A. et al. Mariner-like elements in Rhynchosciara americana (Sciaridae) genome: molecular and cytological aspects. Genetica 133, 137–145 (2008). https://doi.org/10.1007/s10709-007-9193-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9193-y

Keywords

Navigation