Skip to main content

Advertisement

Log in

Molecular characterization of a retrotransposon in the Rhynchosciara americana genome and its association with telomere

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Non-LTR retrotransposons, also known as long interspersed nuclear elements (LINEs), are transposable elements that encode a reverse transcriptase and insert into genomic locations via RNA intermediates. The sequence analysis of a cDNA library constructed from mRNA of the salivary glands of R. americana showed the presence of putative class I elements. The cDNA clone with homology to a reverse transcriptase was the starting point for the present study. Genomic phage was isolated and sequenced and the molecular structure of the element was characterized as being a non-LTR retrotransposable element. Southern blot analysis indicated that this transposable element is represented by repeat sequences in the genome of R. americana. Chromosome tips were consistently positive when this element was used as probe in in-situ hybridization. Real-time RT-PCR showed that this retrotransposon is transcribed at different periods of larval development. Most interesting, the silencing of this retrotransposon in R. americana by RNA interference resulted in reduced transcript levels and in accelerated larval development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad JP, Pablos B, Osoegawa K, Jong PJ, Martin-Gallardo A, Villasante A (2004a) Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. Mol Biol Evol 21(9): 1613–1619.

    Article  Google Scholar 

  • Abad JP, Pablos B, Osoegawa K, Jong PJ, Martin-Gallardo A, Villasante A (2004b) TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol 21(9): 1620–1624.

    Article  Google Scholar 

  • Alvarenga CA, Winter CE, Stocker AJ, Pueyo MT, Lara FJ (1991) In vivo effects of ecdysterone on puff formation, and RNA and protein synthesis in the salivary glands of Rhynchosciara americana. Braz J Med Biol Res 24: 985–1002.

    PubMed  CAS  Google Scholar 

  • Amabis JM, Cabral D (1970) RNA and DNA puffs in polytene chromosomes of Rhynchosciara: inhibition by extirpation of Prothorax. Science 169: 692–694.

    Article  PubMed  CAS  Google Scholar 

  • Amabis JM, Simões LCG (1971) Puff induction and regression in Rhynchosciara angelae by the method of salivary gland implantation. Genetica 42: 404–413.

    Article  PubMed  CAS  Google Scholar 

  • Amdam GV, Simoes ZL, Guidugli KR, Norberg K, Omholt SW (2003) Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMCBiotechnol 3: 1–8.

    Google Scholar 

  • Andrade A, Rezende-Teixeira P, Siviero F, Santelli RV (2005) A shortcut in phage screening technique. Genet Mol Biol 1: 150–151.

    Google Scholar 

  • Berendes H, Lara FJS (1975) RNA synthesis: a requirement for hormone-induced DNA amplification in Rhynchosciara americana. Chromosoma 50: 259–274.

    Article  PubMed  CAS  Google Scholar 

  • Biessmann H, Zurovcova M, Yao JG, Lozovskaya E, Walter MF (2000) A telomeric satellite in Drosophila virilis and its sibling species. Chromosoma 109(6): 372–380.

    Article  PubMed  CAS  Google Scholar 

  • Boisson B, Jacques JC, Choumet V et al. (2006) Gene silencing in mosquito salivary glands by RNA. FEBS Lett 580: 1988–1992.

    Article  PubMed  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25: 169–193.

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29: 23–39.

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta E, Pardue ML (2003) Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. PNAS 100(6): 3363–3368.

    Article  PubMed  Google Scholar 

  • Danilevskaya ON, Slot F, Traverse KL, Hogan NC, Pardue ML (1994) Drosophila telomere transposon HeT-A produces a transcript with tightly bound protein. Proc Natl Acad Sci U S A 91(14): 6679–6682.

    Article  PubMed  CAS  Google Scholar 

  • Danilevskaya ON, Traverse KL, Hogan NC, DeBaryshe PG, Pardue ML (1999) The two Drosophila telomeric transposable elements have very different patterns of transcription. Mol Cell Biol 19(1): 873–881.

    PubMed  CAS  Google Scholar 

  • Díez JL, Vilarino VR, Medina FJ, Morcillo G (2006) Nucleolar localization of a reverse transcriptase related to telomere maintenance in Chironomus (Diptera). Histochem Cell Biol 126(4): 445–452.

    Article  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred, 2. Error probabilities. Genome Res 8: 186–194.

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier LD, Wendl MC, Green P (1998) Basecalling of automated sequencer traces using phred, 1. Accuracy assessment. Genome Res 8: 175–185.

    PubMed  CAS  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5(4): 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Frydman HM, Cadavid EO, Yokozawa J et al. (1993) Molecular characterization of the C-8 DNA puff gene of Rhynchosciara americana. J Mol Biol 233: 799–803.

    Article  PubMed  CAS  Google Scholar 

  • George JA, DeBaryshe PG, Traverse KL, Celniker SE, Pardue ML (2006) Genomic organization of the Drosophila telomere retrotransposable elements. Genome Res 16: 1231–1240.

    Article  PubMed  Google Scholar 

  • Gerard GF, Miller K (1997) Comparison of glyoxal and formaldehyde gels for sizing rRNAs. Focus 19: 17–18.

    Google Scholar 

  • Gorab E (2003) Reverse transcriptase-related proteins in telomeres and in certain chromosomal loci of Rhynchosciara (Diptera: Sciaridae). Chromosoma 111(7): 445–454.

    Article  PubMed  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consedi a graphical tool for sequence finishing. Genome Res 8: 195–202.

    PubMed  CAS  Google Scholar 

  • Goto A, Blandin S, Royet J, Reichhart JM, Levashina EA (2003) Silencing of Toll pathway components by direct injection of doublestranded RNA into Drosophila adult flies. Nucleic Acids Res 31: 6619–6623.

    Article  PubMed  Google Scholar 

  • Kozlova T, Thummel CS (2003) Essential roles for ecdysone signaling during Drosophila mid-embryonic development. Science 301: 1911–1914.

    Article  PubMed  Google Scholar 

  • Lara FJS, Tamaki H, Pavan C (1965) Laboratory culture of Rhynchosciara angelae. Am Nat 99: 189–191.

    Article  Google Scholar 

  • Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75(6): 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  • López CC, Rodriguez E, Díez JL, Edstrom J, Morcillo G (1999) Histochemical localization of reverse transcriptase in polytene chromosomes of chironomids. Chromosoma 108(5): 302–307.

    Article  PubMed  Google Scholar 

  • Madalena CR, Gorab E (2005) A chromosome end satellite of Rhynchosciara americana (Diptera: Sciaridae) resembling nematoceran telomeric repeats. Insect Mol Biol 14(3): 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Guitarte JL, Díez JL, Morcillo G (2004) Complex repetitive sequences in Chironimus telomeres: Its role in telomeric function and in the cellular stress responde. Recent Devel. Nucleic Acids Res 1: 151–165.

    Google Scholar 

  • McEachern MJ, Krauskopf A, Blackburn EH (2000) Telomeres and their control. Annu Rev Genet 34: 331–358.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki S, Ishikawa H, Fujiwara H (1995) Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, Bombyx mori. Mol Cell Biol 15(8): 4545–4552.

    PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357–358.

    PubMed  CAS  Google Scholar 

  • Pardue ML, Debaryshe PG (1999) Drosophila telomeres: two transposable elements with important roles in chromosomes. Genetica 107(1–3): 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML, Danilevskaya ON, Lowenhaupt K, Slot F, Traverse KL (1996) Drosophila telomeres: new views on chromosome evolution. Trends Genet 12(2): 48–52.

    Google Scholar 

  • Pardue ML, Danilekaya ON, Traverse KL, Lowenhaupt K (1997) Evolutionary links between telomeres and transposable elements. Genetica 100(1–3): 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Penalva LOF, Yokozawa J, Stocker AJ, et al. (1997) Molecular characterization of the C-3 DNA puff gene of Rhynchosciara americana. Gene 193: 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem 277: 46849–46851.

    Article  PubMed  CAS  Google Scholar 

  • Rashkova S, Karam SE, Kellum R, Pardue ML (2002a) Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol 159(3): 397–402.

    Article  Google Scholar 

  • Rashkova S, Karam SE, Pardue ML (2002b) Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. PNAS 99(6): 3621–3626.

    Article  CAS  Google Scholar 

  • Rashkova S, Athanasiadis A, Pardue ML (2003) Intracellular targeting of Gag proteins of the Drosophila telomeric retrotransposons. J Virol 77(11): 6376–6384.

    Article  PubMed  CAS  Google Scholar 

  • Rezende-Teixeira P, Siviero F, Andrade A, Santelli RV, Machado-Santelli GM (2007) Mariner-like elements in Rhynchosciara americana (Sciaridae) genome: molecular and cytological aspects. Genetica doi:10.1007/s10709-007-9193-y.

  • Riddiford LM (1993) Hormones and Drosophila development. In: Bate M, Martinez-Arias A, ed. The Development of Drosophila melanogaster. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 899–940.

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Evol Biol 4(4): 406–425.

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Santelli RV, Navarro-Cattapan LD (2000) A simplified CsCl protocol for lambda DNA purification: no enzymatic treatment/one phenol extraction. Genet Mol Biol 23: 65–66.

    Article  Google Scholar 

  • Santelli RV, Siviero F, Machado-Santelli GM, Lara FJS, Stocker AJ (2004) Molecular characterization of the B-2 DNA puff gene of Rhynchosciara americana. Chromosoma 113: 167–176.

    Article  PubMed  Google Scholar 

  • Shpiz SG, Kalmykova AI (2007) Structure of telomeric chromatin in Drosophila. Biochemistry 72(6): 618–630.

    PubMed  CAS  Google Scholar 

  • Sindelka R, Ferjentsik Z, Jonak J (2006) Developmental expression profiles of Xenopus laevis reference genes. Dev Dyn 235: 754–758.

    Article  PubMed  Google Scholar 

  • Siviero F, Rezende-Teixeira P, Andrade A, Machado-Santelli GM, Santelli RV (2006) Analysis of expressed sequence tags from Rhynchosciara americana salivary glands. Insect Mol Biol 15: 109–118.

    Article  PubMed  Google Scholar 

  • Stocker AJ, Pavan C (1974) The influence of ecdysterone on gene amplification, DNA synthesis and puff formation in the salivary gland chromosomes of Rhynchosciara hollanderi. Chromosoma 45: 295–319.

    Article  PubMed  CAS  Google Scholar 

  • Stocker AJ, Troyano-Pueyo M, Pereira SD, Lara FJS (1984) Ecdysteroid titers and changes in chromosomal activity in the salivary glands of Rhynchosciara americana. Chromosoma 90: 26–38.

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24: 4876–4882.

    Article  Google Scholar 

  • Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214: 575–578.

    Article  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, et al. (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12): 973–982.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DL, Chappey C, Lash AE et al. (2000) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 28(1): 10–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Rezende-Teixeira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1.

Northern blot hybridized with putative reverse transcriptase cDNA probe from Rhynchosciara americana. Lanes: (1) fourth instar, second period; (2) fourth instar, third period; (3) fourth instar, fourth period; and (4) fourth instar, fifth period. The arrows indicate the transcript sizes in about of 9.0°kb and 6.5°kb. (TIFF 78.8KB)

Figure S2.

(A) Relative expression of the GAPDH gene in salivary glands of Rhynchosciara americana during normal larval development. Real-time RT-PCR analysis of mRNA extracted from different periods of the fourth instar of larval development. (B) Real-time RT-PCR analysis of mRNA extracted from dsRaRT-treated larvae. (TIFF 561KB)

Figure S3.

Appearance of larvae after RNAi treatment. (a) and (b) Sibling larvae at 18 and 20 days, respectively, after injection of dsRNA of the RaTART retrotransposon. (c) and (d) Control sibling larvae at 18 and 20 days of experiment, respectively, both with characteristics of second-period fourth instar larvae and normal morphological aspects. (TIFF 6.57MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezende-Teixeira, P., Siviero, F., Brandão, A.S. et al. Molecular characterization of a retrotransposon in the Rhynchosciara americana genome and its association with telomere. Chromosome Res 16, 729–742 (2008). https://doi.org/10.1007/s10577-008-1223-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1223-9

Key words

Navigation